Cho tam giác ABC vuông tại A có \(\widehat{ABC}=60^0\)
1) Tính số đo \(\widehat{ACB}\)
2) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh \(\Delta ABD=\Delta ABC\)
3) Tính số đo \(\widehat{DBC}\)
4) Qua C vẽ đường thẳng vuông góc với AC, đường thẳng này cắt tia phân giác \(\widehat{ABC}\)tại E. Tính \(\widehat{BCE}\) và chứng minh \(\Delta DBC=\Delta ECB\). Hãy suy ra \(AC=\frac{1}{2}BE\)
(Vẽ hình giúp mik nha)
a) Ta có \(\Delta ABC\) vuông tại \(A\left(gt\right).\)
=> \(\widehat{ABC}+\widehat{ACB}=90^0\) (tính chất tam giác vuông)
Mà \(\widehat{ABC}=60^0\left(gt\right)\)
=> \(60^0+\widehat{ACB}=90^0\)
=> \(\widehat{ACB}=90^0-60^0\)
=> \(\widehat{ACB}=30^0.\)
b) Xét 2 \(\Delta\) vuông \(ABD\) và \(ABC\) có:
\(\widehat{BAD}=\widehat{BAC}=90^0\)
\(AD=AC\left(gt\right)\)
Cạnh AB chung
=> \(\Delta ABD=\Delta ABC\) (cạnh huyền - cạnh góc vuông).
c) Gọi \(Bx\) là tia phân giác của \(\widehat{ABC}.\)
=> \(\widehat{ABx}=\widehat{xBC}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0.\)
Vì \(AC\perp EC\left(gt\right)\)
=> \(\widehat{ACE}=90^0\)
Hay \(\widehat{xCE}=90^0.\)
Mà
=> \(30^0+90^0=\widehat{BCE}\)
=> \(\widehat{BCE}=120^0.\)
Vì \(\Delta ABD=\Delta ABC\left(cmt\right)\)
=> \(\widehat{ABD}=\widehat{ABC}=60^0\) (2 góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{ABC}=\widehat{DBC}\)
=> \(60^0+60^0=\widehat{DBC}\)
=> \(\widehat{DBC}=120^0.\)
d) Theo câu c) ta có \(\left\{{}\begin{matrix}\widehat{ECB}=120^0\\\widehat{DBC}=120^0\end{matrix}\right.\)
=> \(\widehat{DBC}=\widehat{ECB}=120^0.\)
Xét 2 \(\Delta\) \(DBC\) và \(ECB\) có:
\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)
\(\widehat{xBC}=\widehat{C_1}=30^0\)
Cạnh BC chung
=> \(\Delta DBC=\Delta ECB\left(g-c-g\right).\)
=> \(CD=EB\) (2 cạnh tương ứng)
Ta có: \(AD=AC\left(gt\right)\)
=> \(A\) là trung điểm của \(CD.\)
=> \(AC=\frac{1}{2}CD\) (tính chất trung điểm)
Mà \(CD=EB\left(cmt\right)\)
=> \(AC=\frac{1}{2}EB\left(đpcm\right).\)
Chúc bạn học tốt!