Cho tam giác ABC vuông tại A, đường cao AH, HB=20cm, HC=45cm.Vẽ đường tròn tâm A bán kính AH. Kẻ các tiếp tuyến BM, CN với đường tròn (M và N là các tiếp điểm, khác điểm H).
a) Tính diện tích tứ giác BMNC.
b)Gọi K là giao điểm của CN và HA. Tính các độ dài AK, KN.
c) Gọi I là giao điểm của AM và CB. Tính các độ dài IM, IB.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A), bán kính AH. Từ C kẻ tiếp tuyến CM với đường tròn (A) (M là tiếp điểm, M không nằm trên đường thẳng BC).
a) Chứng minh bốn điểm A, M, C, H cùng thuộc một đường tròn.
b) Gọi I là giao điểm của AC và MH. Chứng minh AM2 = AI.AC.
c) Kẻ đường kính MD của đường tròn (A). Đường thẳng qua A vuông góc với CD tại K cắt tia MH tại F. Chứng minh BD là tiếp tuyến của đường tròn (A). Từ đó chứng minh ba điểm D,F, B thẳng hàng.
d) Đường tròn đường kính BC cắt đường tròn (A) tại P và Q. Gọi G là giao điểm của PQ và AH. Chứng minh G là trung điểm của AH.
Cho tam giác ABC vuông tại A(AB<AC), có đường cao AH(H thuộc BC).Vẽ đường tròn (A;AH). Từ B và C kẻ tiếp tuyến BM và CN đến (A;AH)(M,M là các tiếp điểm, không nằm trên BC). Goị K là giao điểm HN và AC.
1) Chứng minh bốn điểm A,H,C,N cùng thuộc đường tròn đường kính AC
2)Chứng minh BM+CN=BC và M,A,N thẳng hàng
3)Nối MC cắt (A;AH) tại P(P khác M).Chứng minh góc PKC =góc AMC
Cho tam giác ABC vuông tại A ( AB nhỏ hơn AC ) đường cao AH vẽ đường tròn tâm A bán kính AH. Từ điểm C kẻ tiếp tuyến CM với đường tròn (A;AH) (M là tiếp điểm và M ko thuộc BC)
a) chứng minh A,M,C,H cùng thuộc một đường tròn
b) Gọi I lg giao điểm của AC và MH kẻ đường kính của (A) . Chứng minh BD là tiếp tuyến (A) và BH × HC = AI
c) Vẽ đường tròn tâm O đường kính BC cắt ( A) tại P và Q. Chứng minh PQ// OM
Bài 6. (3đ) Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại điểm H. a.Tính độ dài AH, CH b. Kẻ OK vuông góc với AH tại K và tia OK cắt AC tại D. Chứng minh: DH là tiếp tuyến của đường tròn (O) c. Từ trung điểm I của AK kẻ đường thẳng vuông góc với AB và cắt đường tròn tại điểm M. Chứng minh: AM = AK.
cho tam giác ABC vuông tại A có đường cao AH chia cạnh BC thành hai đoạn thẳng HB=4cm , HC=9cm . vẽ (A;AH), vẽ hai tiếp tuyến BM ,CN với đường tròn (M,N là các tiếp điểm khác H)
a. tính AH,AB
B. gọi I là giao điểm của AB và HM , K là giao điểm của AC và HN . tứ giác AIHK là hình gì ? vì sao ?
C. CMR: BC là tiếp tuyến của đường tròn đường kính MN
Cho đường tròn (O). Từ điểm M nằm ngoài đường tròn (O) hẻ hai tiếp tuyến MA,MB của (O) ( với A,B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt (O) tại N ( khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K. a) Chứng minh tứ giác NHBI nội tiếp. b) Chứng minh tam giác NHI đồng dạng với tam giác NIK. c) Gọi C là giao điểm của NB và HI, gọi D là giao điểm của Na và KI, Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.
Bài 6. Cho tam giác ABC vuông tại A (AB < AC) có đườn cao AH ( H thuộc BC). Vẽ đường tròn (A, AH). Từ B và C kẻ tiếp tuyến BM, CN tới (A, AH) (M, N là các tiếp điểm không nằm trên BC). Gọi K là giao điểm của HN và AC.
a) Chứng minh 4 điểm A, H, C, N cùng thuộc một đường tròn.
b) Chứng minh BM + CN = BC và M, A, N thẳng hàng.
c) Nối MC cắt (A, AH) tại P (P khác M). Chứng minh góc PKC = góc AMC
Cho tam giác ABC vuông tại, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh: a) BC là tiếp tuyến của đường tròn (A; AH) b) BD = BH; CE = CH c)BD+CE=BC d) Chứng minh ba điểm D, A, E thẳng hàng HẾT.