b) Theo hệ thức lượng: AE.AB = AH2 ; AF.AC = AH2 => AE.AB = AF.AC.
b) Theo hệ thức lượng: AE.AB = AH2 ; AF.AC = AH2 => AE.AB = AF.AC.
Cho tam giác ABC vuông tại A , đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC.
a) Chứng minh rằng: AE.AB=AF.AC
b) Chứng minh rằng nếu diện tích tan giác ABC bằng 2 lần diện tích tứ giác AEHF thì tam giác ABC vuông cân.
tam giác ABC vuông tại A, đường cao AH. biết AB=9cm, AC= 12cm. Gọi E và F lần lượt là hình chiếu của H trên AB và AC.CM: AE.AB=AF.AC
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
1/ Cho ABC vuông tại A, đường cao AH. Gọi E, F Lần lượt là hình chiếu của H lên AB, AC. a. Chứng minh: AEF đồng dạng AHB. b. Chứng minh : EF2 = HB.HC c. Chứng minh : AE.AB = AF.AC d. Cho biết HB=1cm, HC=4 cm. Tính diện tích tứ giác AEHF.
1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC:
a/ Tính BH; HCbiết AB = 6cm; BC = 10cm.
b/ Chứng minh tứ giác AEHF là hình chữ nhật và EF = AH.
c/ Chứng minh EA.EB + AF.FC = AH2
Cho Tam giác vuông tại A. Đường cao AH. Biết AC = 12cm, BC = 15cm. a) Tính HA, HB, HC. b) Gọi E, F là hình chiếu vuông góc của H lần lượt lên AB, AC. Chứng minh : AE.AB = AF.AC c) Chứng minh: HE²+HF² = HB.HC
Cho tam giác ABC vuông tại A và có đường cao AH. Đường tròn đường kính AH cắt các cạnh AB,AC lần lượt tại E và F.
1/chứng minh tứ giác AEHF là hình chữ nhật
2/chứng minh AE.AB=ÀF.AC
cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB,AC.
a. Trong trường hợp AB=6, AC=8, hãy tính BC, AH, Sin b
b. Chứng minh BE.BA + AF.AC = AB2
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.