Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.
ΔAHM vuông ở H, AH = 1.5, HM = √7/2 nên tính đc AM = 2
Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.
ΔAHM vuông ở H, AH = 1.5, HM = 7√2 nên tính đc AM = 2
Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.
ΔAHM vuông ở H, AH = 1.5, HM = √7/2 nên tính đc AM = 2
Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.
ΔAHM vuông ở H, AH = 1.5, HM = 7√2 nên tính đc AM = 2
cho tam giác ABC vuông tại A có AB = 3cm,AC =4 cm,đường cao AH và trung tuyến AM .tính độ dài HM
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
Cho một đường tròn tâm O,đường kính AB=12cm dây CD có độ dài = 12cm và vuông góc với AB tại H
a,Tính AH,HB
b,Gọi M,N lần lượt là hình chiếu của H lên AC,BC . Tính S tứ giác CMHN
Cho \(\Delta ABC\)vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng \(\sqrt[3]{BC};\sqrt[3]{BD};\sqrt[3]{CE}\)là độ dài ba cạnh của một tam giác vuông
cho tam giác ABC vuông tại A ( AC>AB), AB = 3cm, góc ACB = 30. Kẻ đường cao AH trên đoạn HC lấy điểm D. Từ C kẻ C vuông góc AD. Từ D kẻ DI vuông góc AC
a, Chứng minh tứ giác CEDI, AHEC nội tiếp đường tròn. Xác định tâm và bán kính của mỗi đường tròn ngoại tiếp các tứ giác đó
b, Chứng minh EA là phân giác góc HEI
c, Tính độ dài cung HA của đường tròn ngoại tiếp tứ giác AHEC
Cho tam giác ABC có độ dài ba cạnh AB=20112 cm; BC=8092264; CA=20122 cm. Gọi I,K theo thứ tự là chân các đường vuông góc hạ từ A đến các đường phân giác của góc B và góc C. Tính IK
Bài 3 Cho tam giác ABC (AB<AC) nội tiếp trong đường tròn (O). Vẽ đường kính MN vuông góc BC (điểm M thuộc cung BC ko chứa A). c/m các tia AM, AN lần lượt là các tia phân giác trong và ngoài tại đỉnh A của tam giác ABC
Bài 4 Cho đường tròn (O) và 2 dây MA, MB vuông góc với nhau. Gọi I,K lần lượt là điểm chính giữa của các cung nhỏ MA và MB. Gọi P là giao điểm của AK và BI
a, c/m 3 điểm A,O,B thẳng hàng
b, c/m P là tâm đường tròn nội tiếp tam giác MAB
c, giả sử MA =12cm, MB = 16cm, tính bán kính của đường tròn nộ tiếp tam giác MAB
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp (O) , kẻ đường cao AH. Gọi M,N là hình chiếu vuông góc của H trên AB và AC. Kẻ NE vuông góc AH. Đường vuông góc với AC kẻ từ C cắt (O) tại I và AH tại D , AH cắt (O) tại F.
a) CM góc ABC + góc ACB = góc BIC và tứ giác DENC nội tiếp
b) CM : AM.AB= AN.AC và tứ giác BFIC là hình thang cân
c) Tứ giác BMED nội tiếp
cho tam giác ABC vuông tại A. Bán kính đường tròn ngoại tiếp tam giác ABC có độ dài bằng 15. Đường cao AH=14,4.Khi đó AB+AC=?