a) Bn có thể áp dụng hệ thức trong tam giác vuông hoặc bn sd tam giác đồng dạng :
Cách 1 :Xét \(\Delta ABC\) và \(\Delta HCA\) có :
\(\widehat{BAC}=\widehat{CHA}=90^o;\widehat{ABC}=\widehat{HCA}\)
=> \(\Delta ABC\) ~ \(\Delta HCA\)
=> \(\frac{AC}{HC}=\frac{BC}{CA}\Rightarrow AC^2=HC.BC\)
Cách 2 : Xét \(\Delta ABC\) vuông tại A có đường cao AH
\(\Rightarrow AC^2=HC.BC\)
b) Xét \(\Delta ABC\) vuông tại A
=> \(BC^2=AB^2+AC^2=6^2+8^2=100\)
=> \(BC=10\) cm
Xét \(\Delta ABC\) vuông tại A có đường cao AH
=> AB . AC = AH . BC
=> AH = 4,8 cm
c) Xet \(\Delta ABC\) vuông tại A có đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)