Cho tam giác ABC vuông tại A, ∠ABC = 60◦
, AB = a.
a) Xác định tâm O và tính bán kính đường tròn ngoại tiếp tam giác ABC.
b) Vẽ đường cao AH. Đường tròn đường kính BH cắt AB tại D và đường tròn đường
kính CH cắt AC tại E. Tứ giác ADHE là hình gì? Tính DE.
c) Chứng minh rằng AO⊥DE.
Cho tam giác AHB có \(\widehat{H}=90^0,\widehat{A}=30^0,BH=4cm\). Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA)
a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB
b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
cho tam giác ABC vuông tại A, đường cao AH. Biết AB=12cm;AC=16cm. Vẽ đường tròn tâm B bán kính AB. Đường tròn tâm B cắt BC tại D và E (E nằm giữa B và C) và cắt AH tại K (K khác A). Vẽ đường kính AN của đường tròn tâm B. a)Tính AH, BH, CH b)Chứng minh CK là tiếp tuyến đường tròn tâm B c)Đường thẳng NC cắt đường tròn tâm B tại M. Chứng minh CE.CD=CM.CN d)Tính \(\dfrac{S_{CMH}}{S_{CNB}}\) (tỉ số diện tích tam giác CMHvà tam giác CNB)
Từ một điểm M nằm ngoài ô Kẻ hai tiếp tuyến MA và MB kéo dài BO cắt đường tròn O từ điểm thứ hai là C đường thẳng vuông góc với BC tại O cắt AB tại D, OM cắt AB tại I
a, Chứng minh tứ giác BOAM nội tiếp
b, AC // MO
c, MD = OD
d, quay tam giác MBI Một vòng quanh cạnh IM ta được hình nón. tính diện tích xung quanh và diện tích hình nón biết BM = 6cm AB = 6cm.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D. Kẻ DE vuông góc với BC, DF vuông góc với ÁC
a) CMR: Tứ giác DFEC nội tiếp được đường tròn
b) Gọi G là giao điểm của AB và EF. CMR : Góc FED = Góc ABD và tam giác BDG vuông
c) Gọi I là trung điểm của EF, H là trung điểm của AB. CMR: Tam giác ABD đồng dạng với tam giác FED và IH vuông góc với DI
cho tam giác abc nhọn ab lớn hơn ac nội tiếp đường tròn đường kính ad đường cao cf và bg cắt nhau tại h kẻ oi vuông góc bc a) chứng minh tứ giác cgfb nội tiếp đường tròn b)chứng minh tam giác acd đồng dạng tam giác cfb c)chứng minh tứ giác chbd là hình bình hành và cd.cg=bd.bf d) chứng minh i,h,d thẳng hàng
Cho tam giác ABC nhọn (AB bé hơn AC) nội tiếp (0). Vẽ bán kính OD vuông góc với dây BC tại I. Tiếp tuyến (O) tại C và cắt D tại M A)cmr : tứ giác ODMC nội tiếp B)cm: góc BAD bằng DCM C) tia CM cắt tia AD tại K , tia AB cắt tia CD tại E . Cm EK// DM
CẦN GẤP CÂU C NHÉ!!!
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O), đường cao AD. Biết AD cắt (O) tại điểm thứ hai M, vé ME vuông góc với AC ( E thuộc AC), đường thẳng ED cắt Ab tại I.
1) C/m tứ giác MDEC nôi tiếp.
2) C/m MI vuông góc với AB
3) c/m AB. AI = AE. AC
4) Gọi N là điểm đối xứng của M qua AB, F là điểm đối xứng của M qua AC, NF cắt AD tại H.
a) C/m AM là phân giác của
b) H là trực tâm của tam giác ABC.