Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt AB tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt BC tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt BC tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Bài 4. Cho tam giác ABC nhọn (AB < AC). Gọi M là trung điểm của AC. Trên tia đối MB lấy điểm D sao cho MB = MD.
a) Chứng minh tam giác BMC = tam giác DMA
b) Vẽ AH vuông góc BC ( H thuộc BC). Chứng minh Ah vuông góc AD
c) Chứng minh góc ABC = góc CDA
d) Vẽ CK vuông góc AD (K thuộc AD). Chứng minh BH = DK và H, M, K thẳng hàng
Giúp mình với mai mình nộp bài ồi
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC vuông cân tại A, M là trung điểm của cạnh BC,E là điểm nằm giữa M và C. Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K. CMR BH=A
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
cho tam giác ABC. Vẽ BH vuông góc với Ac.
Gọi M là trung điểm của BC. Tia AM cắt BH tại E.
Trên tia AM lấy điểm F sao cho M là trung điểm của È.
CMR: FC vuông góc với AC
cho tam giác ABC có AB<AC . Trên cạnh AC lấy điểm D sao cho AD = AB . Tia phân giác góc A cắt BC ở E
a) c/m tam giác ABE = tam giác ADE
b) AE cắt BD tại I . C/m I là trung điểm BD
c) Trên tia AI lấy điểm F sao cho IA = IF . Vẽ tia EH vuông góc với AB tại H. C/m EH vuông góc với DF