Cho tam giác ABC vuông tại A có AB=5cm;AC=12cm.Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. Chứng minh tam giác BKC cân và B,G,D thẳng hàng ( với G là trọng tâm của tam giác BKC.
Cho tam giác ABC cân tại A, Â = 120° Từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. a) Chứng minh ∆DAB = ∆DAC b) Chứng minh ∆ DBC là tam giác đều. c) Gọi H là giao điểm của AD và BC . Chứng minh 2BH + AD > AB + BD.
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
. Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác DAE cân
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh tam giác BDF cân tại B.
c) Chứng minh BD = CE.
cho tam giác ABC cân tại A( góc A<90độ). Kẻ BM vuông góc với AC tại M,CN vuông góc với AB tại N.BM cắt CN tai I. a) CM : AM=AN b)CM:tam giác MIN là tam giác cân c) Tia AI cắt BC tại K . CM:tam giác KMN là tam giác cân d) Cho AB=13cm,BC=10cm.Tính AK
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .