cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
Cho tam giác ABC, gọi M là trung điểm AB, D là trung điểm BC, N thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN. Biểu diễn \(\overrightarrow{KD}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m - n = ...
1. Cho tam giác ABC , M là trung điểm AB , N thuộc cạnh AC sao cho NC=2NA , K là trung điểm MN
a) chứng minh vecto KA=1/4AB+1/6AC
b) gọi D là trung điểm BC chứng minh vecto KD=1/4AB+1/3AC
2. Cho tam giác ABC trung tuyến AM , I là trung điểm AM , K là điểm trên cạnh AC sao cho AK=1/3AC
a) phân tích vecto BI , BK theo vecto a=vecto BA vecto b= vecto BC
b) chứng minh B,I,K thẳng hàng
Cho tam giác ABC , gọi M, N lần lượt là trung điểm AB, AC . Trên đường thẳng MN, BC lần lượt lấy điểm E, F sao cho \(\overrightarrow{ME}=-\frac{1}{2}\overrightarrow{NE},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\) chứng minh 3 đểm A,E,F thẳng hàng
Cho tam giác ABC vuông tại A biết AB=a ;AC=\(a\sqrt{3}\) ;M nằm trên đoạn AC sao cho \(\overrightarrow{AC}=3\overrightarrow{AM}\) và N là trung điểm của BC.
1)Chứng minh rằng \(\overrightarrow{MN}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\) .Từ đó suy ra MN vuông góc với BC
2)Gọi G là trọng tâm tam giác BMN,K nằm trên đoạn AB sao cho \(BK=\frac{4}{13}AB\) .Chứng minh rằng C;G;K thẳng hàng
Cho tam giác ABC, gọi M là trung điểm của AB, N là điểm thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN, biểu diễn \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\) thì giá trị n = ...
1. Cho \(\Delta ABC\) . gọi M là điểm thuộc cạnh AB, n là điểm thuộc cạnh AC sao cho \(AM=\frac{1}{2}AB\) , \(AN=\frac{3}{4}AC\) . gọi O là giao điểm của CM và BN. trên đường thẳng BC lấy E. đặt \(\overrightarrow{BE}=x\overrightarrow{BC}\)
a) Phân tích \(\overrightarrow{AO}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
b) tìm x để A,E,O thẳng hàng
2. cho tam giác ABC đều cạnh \(2\sqrt{3}\) , d là đường thẳng qua B và tạo với AB 1 góc 600 \(\left(C\notin\Delta\right)\) . tìm GTNN của \(A=\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
Cho tam giác ABC và hai điểm M,N nằm trên các cạnh AC,AB sao cho MN song song với BC. Điểm P di chuyển trên đoạn thẳng MN. Lấy các điểm E,F sao cho \(EP\perp AC,EC\perp BC,EP\perp AB,FB\perp BC\)
a) Chứng minh rằng đường thẳng EF đi qua một điểm cố định khi P di chuyển
b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. CHứng minh BC đi qua trung điểm PQ