Sửa đề: cắt AB tại D
Xét ΔBED vuông tại E và ΔBAC vuông tại A có
góc B chung
=>ΔBED đồng dạng với ΔBAC
Sửa đề: cắt AB tại D
Xét ΔBED vuông tại E và ΔBAC vuông tại A có
góc B chung
=>ΔBED đồng dạng với ΔBAC
cho tam giác ABC vuông tại A có AB<AC,đường phân giác AD. Gọi M,N lần lượt là hình chiếu của D trên AB, AC. BN cắt CM tại K, AK cắt DM tại I, BN cắt DM tại E,CM cắt DN tại F.
a.C/m: EF song song với BC
b.K là trực tâm của AEF
c.Tính góc BID
Cho tam giác ABC, trực tâm H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm AD, M là trung điểm BC. Chứng minh
a, O là giao điểm các đường trung trực của tam giác ABC
b, OM=1/2AH
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi M,N lần lượt là trung điểm của BC,AB.
a) CM: tam giác ABH đồng dạng tam giác CBA và \(AB^2=BH.BC\)
b) Tia phân giác góc ABC cắt AC tại D. Vẽ đường thẳng AK vuông góc BD tại K.
CM: tam giác BHD đồng dạng tam giác BKC.
c) CM: MN vuông góc AB và \(BH.BM=BN.BA\)
d) Từ B vẽ đường thẳng vuông góc với BC cắt MN tại I, CI cắt AH tại O.
CM: ON song song BC (câu chủ yếu)
Cho tam giác ABC vuông tại A.Có AB=16cm,AC=12cm.Kẻ đường cao AH
a)chứng minh rằng: tam giác ABC đồng dạng với tâm giác HBA
b)Tính HC,HB
c)Kẻ tia phân giác của góc ABC Cắt AH tại E và cắt AB tại D. Tính diện tích của tứ giác DEHB
cho tam giác ABC vuông tại A,M là trung điểm BC,từ M kẻ đường thẳng song song với AC,AB lần lượt cắt AB atij E,cắt AC tại F.chứng minh EFCB là hình thang
cho tam giác ABC vuông tại A , kẻ AH vuông góc với BC tại H
a) Cmr : tam giác HAC đồng dạng tam giác ABC
b) biết AC=16cm , BC=20cm . tính độ dài đoạn AB , AH
c) kẻ tia phân giác BD của góc ABC cắt AH tại I và cắt AC tại D . chứng minh : tam giác AID là tam giác cân
d) chứng minh : AI.AD=IH.DC
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN.
Cho tam giác ABC vuông tại A (AC > AB ) , đường cao AH . Biết BC= 5 cm , BH= 0.125 cm , M là trung điểm BC , đường trung trực BC cắt AC tại D.
a) Tính AB , AH .
b) Tính tỉ số diện tích của tam giác DMC và tam giác ABC .
- Cho tam giác ABC trong nửa mặt phẳng chứa A bờ BC, vẽ tia Cx //AB từ trung điểm E của AB vẽ dường thẳng //với BC cắt AC tại D và cắt Cx tại F đường thẳng BF cắt AC tại I
A, chứng minh : IC2= IA .ID
B, Tính : tỉ số ID trên IC