a. gọi AB là x ta có
AB2 + AC2 = BC2
x2 + x2 = BC2
2x2 = 4
X2= 2
x = \(\sqrt{2}\)
a. gọi AB là x ta có
AB2 + AC2 = BC2
x2 + x2 = BC2
2x2 = 4
X2= 2
x = \(\sqrt{2}\)
Cho tam giác ABC vuông tại A có AB=5cm,BC=10cm. 1:tính độ dài AC. 2:Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. Chứng minh tam giác ABC=tam giác EBD và AE vuông góc với BD. 3:Gọi giao điểm của 2 đường thẳng ED và BA là F. Chứng minh :tam giác ABC=tam giác AFC.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC
a/ Chứng minh: góc AHB = góc AHC
b/ Giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c/ Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh ABM cân
d/ Chứng minh BM // AC
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân
Cho tam giác ABC vuông tại A có AB = 3cm; BC = 5cm.
a) Tính độ dài cạnh AC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ACBA = ACDA.
c) Trên cạnh AC lấy điểm E sao cho CE = lem. CMR: EA là tia phân giác của góc BED.
d) ACBD và AEBD là tam giác gì? Vì sao?
e) Tam giác ABC cần có thêm điều kiện gì để tam giác CBD trở thành tam giác đều?
Bài 2: Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết AB = AC = 2dm
A. BC = 4 dm B. BC = √6 dm C. BC = 8dm D. BC = √8 dm
Bài 3: Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm B. 10 cm, 24 cm C. 12 cm, 24 cm D. 15 cm, 24 cm
Bài 4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 15 cm; 8 cm; 18 cm
B. 21 cm; 20 cm; 29 cm
C. 5 cm; 6 cm; 8 cm
D. 2 cm; 3 cm; 4 cm
Bài 5: Cho tam giác ABC vuông tại A. Kẻ AD ⊥ BC tại D. Biết AB = 7 cm, BD = 4 cm. Khi đó AD có độ dài là:
A. AD = 33 cm
B. AD = 3 cm
C. AD = √33 cm
D. AD = √3 cm
1. Cho tam giác ABC vuông tại A có AC=1cm, BC=2cm. Kẻ đường trung tuyến BK và đường cao AH
a) Tính AB
b) Tính BK và AH
2. Cho tam giác ABC vuông cân tại A (ˆBAC=90BAC^=90 độ, BD=BA). Ở phía ngoài tam giác ABC, dựng tam giác DAB vuông cân tại D (ˆDAB=90DAB^=90 độ, BD=BA). Gọi E là một điểm tùy ý trên DA. Đường thẳng đi qua E và vuông góc với BE cắt AC ở F
a) Gọi K là giao điểm của BD và AC. CMR tam giác KAB vuông cân tại A và DA là đường trung trực của đoạn KB
b) CMR tam giác KEA= tam giác BEA
c) CMR tam giác KEF cân tại E. Từ đó suy ra BE= EF
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm, BD là tia phân giác của góc B ( D thuộc AC ). Đường thẳng kẻ từ D vuông góc với BC tại E
a) Tính AC
b) Chứng minh: Tam giác ABE cân
c) Trên tia BA lấy điểm F sao cho BF = BC. Chứng minh 3 điểm E, D, F thẳng hàng