Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E
a, Chứng minh BANC là tứ giác nội tiếp
b, Chứng minh CA là phân giác của B C D ^
c, Chứng minh ABED là hình thang
d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất
Bài 1:
a/ Cho hình vuông ABCD có cạnh 5cm. Chứng minh rằng: A, B, C, D cùng nằm trên một đường tròn, tính bán kính.
b/ Cho hình chữ nhật ABDE có AB = 8, BD = 6. Chứng minh rằng: A, B, D, E cùng nằm trên một đường tròn, tính bán kính.
Bài 2: Cho tam giác ABC, vẽ đường tròn tâm O đường kính BC. (O) cắt AB, AC lần lượt tại D và E, BE giao CD tại K.
a/ CMR: CD ^ AB, BE ^ AC.
b/ CMR: AK ^ BC.
Bài 3: Cho tam giác ABC vuông ở B, AB = 8cm, BC = 6cm. Gọi D là điểm đối xứng của điểm B qua AC.
a. CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
b. Vẽ đường kính BE của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ACDE là hinh thang cân.
Cho tam giác ABC vuông tại A. Điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N. Nối AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A; lấy K đối xứng với M qua E. 1. Chứng minh BANC là tứ giác nội tiếp; 2. Chứng minh CA là phân giác của góc BCD; 3. Tìm M để tứ giác MBCK là hình thoi; 4. Tìm vị trí của M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất.
Bài 6. (3đ) Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại điểm H. a.Tính độ dài AH, CH b. Kẻ OK vuông góc với AH tại K và tia OK cắt AC tại D. Chứng minh: DH là tiếp tuyến của đường tròn (O) c. Từ trung điểm I của AK kẻ đường thẳng vuông góc với AB và cắt đường tròn tại điểm M. Chứng minh: AM = AK.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O ; R). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại M. Gọi I là trung điểm của BC.
a, Chứng minh tứ giác MAOI nội tiếp trong một đường tròn. Xác định tâm và đường kính của đường tròn này.
b, Chứng minh: MA2 = MB.MC
c, Vẽ đường kính AK của đường tròn (O). Gọi H là điểm đối xứng của K qua I. Chứng minh H là trực tâm của tam giác ABC.
d, Tia AH cắt (O) tại D. Cho BI =( R √6)/3 và góc ABC – ACB = 30o . Tính điện tích của tứ giác ABDC theo R.
cho đường tròn tâm O đường kính AB ,điểm m thuộc đọan AB,qua m vẽ đường thẳng d vuông góc với AB.Trên d lấy C sao cho C nằm ngoài đường tròn tâm O .Vẽ các tiếp tuyến CE CF với đường tròn tâm O.gọi h,k là giao điểm của CA,CB với đường tròn tâm O (H khác A,K khác B);I là giao điểm của AK và BH.
Chứng minh C M E F O thuộc 1 đường tròn
Chứng minh E F I thẳng hàng
Xác định vị trí điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng.
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng