Cho O nằm trong tam giác ABC . Chứng minh rằng \(\dfrac{AB+BC+CA}{2}< OA+OB+OC< AB+BC+CA\)
1,Cho tam giác abc gọi o là điểm bất kỳ nằm trong tam giác . chứng minh \(\dfrac{AB+BC+CA}{2}\)<OA+OB+OC<AB+BC+CA
2, Cho tam giác ABC gọi M là trung điểm của BC. CMR: 2AM<AB+BC
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
cho tam giác ABC điểm M nằm trong Δ đó . c/m a, AB + BC + CA < 2 { MA + MB + MC } B,2 { MA + MB + MC }< 2 { AB + BC + CA }
em hãy chứng minh trong tam giác ABC có CA+CB>AB và BA+BC>CA
Cho tam giác ABC. Hãy chứng minh các bất đẳng thức:
1. BA + BC > AC
2. CA + CB > AB
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
Bất đẳng thức tam giác
AB+AC>BC
Với tam giác Abc có :AB+BC/.CA :AB+AC>BC;AC+BC>AC
từ bất đẳng thức tam giác ,ta cũng có :AB>CA-CB; AC>BC-BA ;BC>AC-AB
Bài 1:Cho △ABC,điểm M bất kì nằm trong tam giác
a)So sánh MB+MC với BC
b)Chứng minh 2(MA+MB+MC)>AB+BC+CA
Bài 2:Cho △ABC có AB<AC.Tia phân giác ∠A cắt BC tại D,trên cạnh AC lấy điểm E sao cho AE=AB
a)So sánh DB và DE
b,Chứng minh AC-AB>DC-DB