Cho tam giác ABC nhọn. Vẽ BD vuông góc AC tại D. CE vuông góc AB tại E. BD và CE cắt nhau tại H. Gọi M là trung điểm của CB. Trên tia đối của tia MH lấy điểm K sao cho MH = MK
a) Chứng minh tam giác BHM = tam giác CMK
b) Chứng minh CK vuông góc AC
c) Vẽ HI vuông góc BC tại I. Trên tia HI lấy điểm G sao cho HI =IG. Chứng minh GC =BK
Bài 2: Cho tam giác ABC có 3 góc nhọn. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Trên tia đối của BD lấy F sao cho BF=AC,trên tia đối của CE lấy G sao cho CG=AB. Chứng Minh:
a) AF=AG
b)AF vuông góc với AG
Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
Cho tam giác ABC , Mlà trung điểm của BC , Trên tia đổi của tia MA lấy điểm K sao cho MK = MA a ) Chứng minh tam giác ABC = tam giác KMB b) Chứng minh AC//BK c ) từ M kẻ MH vuông góc với AC ( H thuộc AC ) , kẻ MI vuông góc với BK ( I thuộc BK) . Chứng minh MH = MI d) Trên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB , trên ta đó lấy điểm D sao cho A = AB . Trên nửa mặt phẳng ko chứa tia B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC , Chứng minh rằng AM = DE/2
Cho tam giác abc vuông tại a ( AB<AC) M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho : MD=MC . C/m : a) tam giác AMD = tam giác BMC b)BD vuông góc với AB c) Gọi N là trung điểm của BC , trên tia đối của tia NA lấy điểm E sao cho NE = NA chứng minh D,B,E thẳng hàng
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC