Cho đường tròn (O;R) và hai điểm B, C cố định sao cho góc BOC=1200. Điếm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp tam giác ABE, ACF cắt nhau tại K ( K khác A). Gọi H là giao điểm của BE và CF.
a) CM tứ giác BHCK nội tiếp.
b) Xác định vị trí điểm A để SBHCK lớn nhất, tính diện tích lớn nhất đó của tứ giác BHCK theo R.
cho (O,r), dây BC cố định, BC=R căn 3,A là điểm di động trên cung lớn BC(A khác BC) sao cho tam giác ABC nhọn. các đường cao BD,CE của tam giác ABC cắt nhau tại H. kẻ đường kínH AF của đường tròn tâm O ,AF cắt BC tại N.
b. chứng minh AE.AB=AD.AC
c.chứng minh tứ giác BHCF là hình bình hành
d.đường tròn ngoại tiếp tam giác ADE cắt (O) tại điểm thứ 2 là K ( K khác O). chứng minh K,H,F thẳng hàng
cho đường tròn (O;R) dây BC cố định .điểm A di động trên cung lớn BC (AB < AC) sao cho tam giác ABC nhọn . các đường cao BE,CF cắt nhau tại H. gọi K là giao điểm của EF và BC .
a) chứng minh tứ giác BCEF nội tiếp .
b) chứng minh KB.KC=KE.KF
Cho đường tròn (O; R) và dây cung B C = R 3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng với B qua AC và F và điểm đối ứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.
b) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính diện tích lớn nhất của tứ giác đó theo R.
Cho ΔABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường cao AD, BE cắt nhau tại H, kéo dài BE cắt đường tròn (O;R) tại F.
a) Chứng minh: Tứ giác CDHE nội tiếp được một đường tròn.
b) Chứng minh: Tam giác AHF cân.
c) Gọi M là trung điểm của cạnh AB. Chứng minh: ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE .
d) Cho BC cố định và BC R = 3 . Xác định vị trí của A trên đường tròn (O;R) để DH.DA lớn nhất.
Cho BC là dây cung cố ddingj của đường tròn (O;R) (BC # 2R) . A là điểm chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao BD, CE của tam giác ABC cắt nhau tại H.
a, Chứng minh rằng : A, D, H, E cùng thuộc một đường tròn và AH > DE
b, K là trung điểm của BC
Chứng minh rằng: AH // OK
c, Xác định vị trí của điểm A để diện tích tam giác ABC lớn nhất
Cho đường tròn (O; R) và dây cung B C = R 3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng với B qua AC và F và điểm đối ứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.
a) Chứng minh KA là phân giác trong góc BKC và tứ giác BHCK nội tiếp.
cho tam giác nhọn ABC nội tiếp đường tròn (O) . Các đường cao BD , CE ( D thuộc AC , E thuộc AB ) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N ( M khác B , N khác C )
1. CM tứ giác BCDE nộit tiếp được trong 1 đường tròn
2. CM MN // DE
3. khi đường tròn (O) và dây BC cố định , điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn , cm bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để S tam giác ADE đạt max
Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I.
a) Chứng minh rằng MBIC là tứ giác nội tiếp.
b) Chứng minh rằng: FI.FM = FD.FE.
c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng.
d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất.