Cho tam giác ABC nhọn gọi M là Trung điểm BC, D thuộc tia đôi MA: MA bằng MD. Chứng minh: tam giác ABM bằng tam giác DCM. Chứng minh DC song song với AB . Kẻ Dx vuông góc với BC tại H. K thuộc tia Dx: HK bằng HD chứng minh : MK bằng DK và AK vuông góc với DK
Cho tam giác ABC , M là trung điểm cạnh BC , trên tia đối của tia MA lấy điểm D sao cho MA=MD .Từ D vẽ tia Dx vuông góc BC tại E .Trên tia Dx lấy điểm K sao cho E là trung điểm của DK .Chứng minh :
a) AC//BD
b)MA=MK
c)AK//BC
Cho tam giác ABC , M là trung điểm cạnh BC , trên tia đối của tia MA lấy điểm D sao cho MA=MD .Từ D vẽ tia Dx vuông góc BC tại E .Trên tia Dx lấy điểm K sao cho E là trung điểm của DK .Chứng minh :
a) AC//BD
b)MA=MK
c,AK//BC
cho tam giác ABC ,M là triung điểm củt BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA . Từ D vẽ tia Dx vuông góc với BC tại E. Trên tia Dx lấy điểm K sao cho E là trung điểm của DK . CMR
a) Tam giác AMC=tam giác DMB
b) AC// BD
c)MA = MK
d) AK//BC
Cho tam giác ABC có ba góc nhọn và AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Kẻ AH vuông góc với BC tại H. Trên tia đối của HA lấy điểm K sao cho HK = HA.
1) Chứng minh Tam giác AMB = Tam giác DMC.
2) Chứng minh Tam giác ABK là tam giác cân.
3) Chứng minh KD//BC
Nhanh lên kiếm tick nào các bẹn!!!!!!!
Cho tam giác ABC có ba góc nhọn và AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Kẻ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm K sao cho HK = HA.
1) Chứng minh AAMB= NDMC.
2) Chứng minh AABK là tam giác cân.
3) Chứng minh KD|| BC
Giusp tớ với ạ tớ đg cần gấp
Cho tam giác ABC . Kẻ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = MA a)Cm tam giác ABM = tam giác ECM b)Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA Chứng minh BC là tia phân giác của góc ABD và BD = CE c) Hai đường thẳng BD và CE cắt nhau tại K . Chứng Minh Tam góc BCK cân
Cho tam giác ABC có 3 góc nhọn, đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD.
a) Chứng minh: tam giác AHB = tam giác DHB
b) Chứng minh rằng: BC là tia phân giác của góc ABD
c) Gọi M là trung điểm của Bc. Trên tia đối của tia MA lấy điểm F sao cho MF = MA. Từ F kẻ FN vuông góc với BC (N thuộc BC). Chứng minh: HD = NF
cho tam giác ABC . Gọi M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh tam giác ABM=tam giác DCM và AB///DC
b) Kẻ BE vuông góc với AM( E thuộc AM ), CF vuông góc với DM( F thuộc DM ). Chứng minh: M là trung điểm của EF