a: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
\(\widehat{EAC}\) chung
Do đó: ΔAEC~ΔAFB
b: ΔAEC~ΔAFB
=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
\(\widehat{FAE}\) chung
Do đó ΔAEF~ΔACB
=>\(\widehat{AEF}=\widehat{ACB}\)
c: Xét ΔABC có
BF,CE là các đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại D
Xét ΔBDH vuông tại D và ΔBFC vuông tại F có
\(\widehat{DBH}\) chung
Do đó: ΔBDH~ΔBFC
=>\(\dfrac{BD}{BF}=\dfrac{BH}{BC}\)
=>\(BD\cdot BC=BH\cdot BF\)
Xét ΔCDH vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCEB
=>\(\dfrac{CD}{CE}=\dfrac{CH}{CB}\)
=>\(CH\cdot CE=CD\cdot CB\)
\(BH\cdot BF+CH\cdot CE\)
\(=BD\cdot BC+CD\cdot BC=BC^2\)