Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuan Trjng

Cho tam giác ABC nhọn, ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác AEHF là tứ giác nội tiếp. b) Chứng minh tứ giác ABDE là tứ giác nội tiếp. c) Chứng minh DH là tia phân giác của góc EDF

Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 20:39

a: Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiép

b: Xét tứ giác ABDE có 

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó:ABDE là tứ giác nội tiếp

Rhider
8 tháng 3 2022 lúc 20:41

a) \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)

\(\rightarrow\) Tứ giác \(AEHF\) nội tiếp đường tròn

b) \(\widehat{AEB}=\widehat{BDA}=90^o\)

\(\rightarrow\) Tứ giác \(ABDE\) nội tiếp đường tròn

 

Nguyễn Huy Tú
8 tháng 3 2022 lúc 20:50

a, Xét tứ giác AEHF có 

^AFH + ^AEH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

b, Xét tứ giác ABDE có 

^AEB = ^BDA = 900

mà 2 góc này kề, cùng nhin cạnh AB

Vậy tứ giác ABDE là tứ giác nt 1 đường tròn

c, Xét tứ giác DEAC có 

^AFC = ^ADC = 900

mà 2 góc này kề, cùng nhìn cạnh AC 

Vậy tứ giác DEAC là tứ giác nt 1 đường tròn 

=> ^ADF = ^ACF 

Lại có ^ADE = ^ABE (góc nt chắn cung AE của tứ giác AEDB) 

Xét tứ giác BEFC có ^BFC = ^BEC = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BEFC là tứ giác nt 1 đường tròn 

mà ^FBE = ^ECF (góc nt chắc cung FE)

=> ^FDA = ^EDA 

=> DH là pg ^EDF

tôi là tít
18 tháng 2 lúc 9:13

Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó:AEHF là tứ giác nội tiếp đường tròn

Xét tứ giác ABDE có

\(\widehat{AEB}=\widehat{ADB}\) \(=90^0\)

Do đó:ABDE là tứ giác nội tiếp


Các câu hỏi tương tự
Lương Văn Chí
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết
Đỗ’s Dũng’s
Xem chi tiết
Mỹ Mỹ
Xem chi tiết
Fox Neko
Xem chi tiết
01_ Thu An 9/7
Xem chi tiết
vi lê
Xem chi tiết
nguyễn xuân tùng
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết