a: Xét tứ giác AMHN có \(\hat{AMH}+\hat{ANH}=90^0+90^0=180^0\)
nên AMHN là tứ giác nội tiếp
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\hat{MAB}\) chung
Do đó: ΔAMB~ΔANC
=>\(\frac{AM}{AN}=\frac{AB}{AC}\)
=>\(AM\cdot AC=AB\cdot AN\)
a: Xét tứ giác AMHN có \(\hat{AMH}+\hat{ANH}=90^0+90^0=180^0\)
nên AMHN là tứ giác nội tiếp
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\hat{MAB}\) chung
Do đó: ΔAMB~ΔANC
=>\(\frac{AM}{AN}=\frac{AB}{AC}\)
=>\(AM\cdot AC=AB\cdot AN\)
Cho tam giác ABC nhọn nội tiếp (O) vẽ 2 đường cao BM và CN cắt nhau tại H
a/ Chứng minh AH vuông góc BC
b/ Chứng minh tứ giác AMHN nội tiếp
c/ Chứng minh BCMN thuộc đường tròn xác định tâm I
d/ Vẽ tiếp tuyến Ax. Chứng minh OA vuông góc MN
cho tam giác ABC nhọn nội tiếp đường tròn (O), hai đường cao BM,CN của tam giác ABC cắt nhau tại H . chứng minh:
a. tứ giác BCMN nội tiếp. xác định tâm E của đường tròn ngoại tiếp tứ giác BCMN
b. tam giác AMN đồng dạng tam giác ABC
c. tia AO cắt đường tròn (O) tại K, cắt MN tại I . chứng minh: tứ giác BHCK là hình bình hành
d. chứng minh: AK vuông góc MN
Bài 1: Cho tam giác ABC nhọn nội tiếp (O;R). Các đường cao AD, BM, CN cắt nhau tại H. gọi K là trung điểm của AH.
a) Chứng minh: BNMC nội tiếp và là tâm đường tròn nội tiếp tam giác MNH.
b) Gọi L là điểm đối xứng của H qua BC. Chứng minh: AM.AC = AN.AB và điểm L thuộc dường tròn (O).
c) Gọi I là giao điểm của AH và AN. Chứng minh MB là tia phân giác góc NMD và IH.AD = AI.HD.
d) Chứng minh: I là trực tâm tam giác BKC.
giúp với!
Cho tam giác ABC nhọn, đường cao BM và CN cắt nhau tại H. Chứng minh các tứ giác AMHN và BNMC là những tứ giác nội tiêp
cho tam giác abc nhọn nội tiếp đường tròn tâm o bán kính R, hai đường cao BM và CN cắt nhau tại H.
a) chứng minh tứ giác BNMC nội tiếp. xác định tâm I của đường tròn ngooaij tiếp tứ giác này
b) chứng minh tam giác AMN đồng dạng tam giác ABC
c) chứng minh OI // AH
d) E là giao điểm của AH và BC, chứng minh MH là phân giác của góc NME
P/s: mình cần câu d thôi ạ
Cho tam giác ABC, vẽ đường tròn (O) đường kinh BC cắt AB tại M và cắt AC tại N. BN cắt CM tại H a) Chứng minh tứ giác AMHN nội tiếp được một đường tròn, b) Chứng minh HMBC = HB MN c) Kẻ AH cắt BC tại K, Chứng minh H là tâm đường tròn nội tiếp tam giác KMN
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Hai đường cao AN và BM của tam giác ABC cắt nhau tại I a) Chứng minh tứ giác IMCN nội tiêpa một đường tròn b) Chứng minh: IA.IN=IB.IM c) Tia BM cắt (O) tại H. Chứng minh AI = AH
cho tam giác ABC nội tiếp đường tròn tâm O bán kính bằng 5cm, hai đường cao BM và CN cắt nhau tại H.
a, Chứng minh tứ giác AMHN nội tiếp
b, chứng minh tứ giác BNMC nội tiếp
c, chứng minh OA vuông góc với MN
Mọi người giải chi tiết giúp mình với nhé !! Cảm Ơn
Cho tam giác ABC nhọn (AC < AB) nội tiếp đường tròn O đường kính AD. Đường cao CF và BG cắt nhau tại H kẻ OI vuông BC
a) Chứng minh tứ giác CFBD nội tiếp đường tròn
b)chứng minh tam giác ACD đồng dạng tam giác CFB
c)chứng minh tứ giác CHBD là hình bình hành và CD.CG=BD.BF
d)chứng minh I, H, D thẳng hàng
CHO TAM GIÁC ABC CÓ BA GÓC NHỌN (AB<AC) NỘI TIẾP DƯỜNG TRÒN TÂM O. VẼ HAI ĐƯỜNG CAO BN VÀ CM CẮT NHAU TẠI H
A/ CHỨNG MINH TỨ GIÁC AMHN VÀ TỨ GIÁC BMNC NỘI TIẾP DƯỜNG TRÒN
B/ TIẾP TUYẾN TẠI A CẮT BC TẠI I. CHỨNG MINH IA MŨ 2 =IB*IC
C/ DƯỜNG THẲNG MN CẮT DƯỜNG TRÒN TÂM O TẠI D VÀ E ( ĐIỂM M NẰM GIỮA HAI ĐIỂM D VÀ N ) CHỨNG MINH AD LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN NGOẠI TIẾPTAM GIÁC DBM