Chứng minh :
Xét △ABC có :
M là trung điểm của BC đồng thời AM là tia phân giác của \(\widehat{A}\)
⇒ △ABC cân tại A ( nếu một tam giác có đường trung điểm đồng thời là tia phân giác góc đối diện thì t/g đó là tam giác cân )
Chứng minh :
Xét △ABC có :
M là trung điểm của BC đồng thời AM là tia phân giác của \(\widehat{A}\)
⇒ △ABC cân tại A ( nếu một tam giác có đường trung điểm đồng thời là tia phân giác góc đối diện thì t/g đó là tam giác cân )
Cho tam giác ABC cân tại A.Tia phân giác góc B cắt AC tại M, tia phân giác góc C cắt AB tại N
a)Chứng minh tam giác AMN cân và MN//BC
b) Gọi I là trung điểm của BC , E là giao điểm của CN và BM.Chứng minh A,I,E thẳng hàng
Cho tam giác ABC có AB=AC, AM là phân giác của góc BAC ( M thuộc BC ):
a, Chứng minh tam giác ABM= tam giác ACM
b, Chứng minh M là trung điểm của BC và AM vuông góc BC
c, Kẻ ME vuông góc AB ( E thuộc AB ) và MF vuông góc AC ( F thuộc AC ). Chứng minh ME=MF
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
Cho tam giác ABC có AB=AC, AM là phân giác của góc BAC ( M thuộc BC ):
a, Chứng minh tam giác ABM= tam giác ACM
b, Chứng minh M là trung điểm của BC và AM vuông góc BC
c, Kẻ MF vuông góc AB ( F thuộc AB ) và ME vuông góc AC ( E thuộc AC ). Chứng minh EF // BC
Cho tam giác abc cân tại a . M là trung điểm của bc . Mi vuông góc vs ab . Mk vuông góc vs ac. - chứng minh tam giác BIM = tam giác BKM - chứng minh AM là đường trung trực của BC - Tính BC biết Ab = 10 cm , AM =8cm
Cho tam giác ABC nhọn (AB< AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN. a. Chứng minh tam giác AMB = tam giác NMC b. Vẽ AH vuông góc BC(H thuộc BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA. Chứng minh: tam giác ABI cân và BI = CN
cho tam giác ABC có AB = AB . Gọi M là trùn điểm của BC . Chứng minh rằng :
a, AM là phân giác của góc BAC.
b, Am là trung trực của BC.
Cho tam giác ABC cân tại A.Trên cạnh AB, AC lấy 2 điểm D, E sao cho AD=AE. Gọi M là trung điểm của BC.
a/ chứng minh tam giác ADE cân, DE//BC.
b/ chứng minh tam giác AMB=AMC, AM là trung điểm của BAC.
c/ chứng minh AM vuông góc BC.
d/ chứng minh tam giác NBD=NCE.
e/ chứng minh tam giác AMD=ANC.
Cho tam giác ABC vuông tại A có góc ACB =60°. Trên cạnh BC lấy điểm D sao cho CA=CD. Gọi M là trung điểm của AD:
a, tính góc ABC và chứng tỏ tam giác ACD là tam giác cân
b, Chứng minh: tam giác ACM = tam giác DCM
c, Gọi P là giao điểm của CM và AB. Chứng minh: DP vuông góc BC