cho tam giác ABC, M là điểm trong tam giác. gọi D,E,F,H,I,K lần lượt là trung điểm của MA,MB,MC,BC,CA,AB. cmr DH,EI,FK đồng quy
cho tam giac ABC, M là điểm nằm trong tam giác.Gọi D,E,F,H,I,K lần lượt là trung điểm của MA,MB,MC,BC,CA,CB.Chứng minh DH,EI,FK đồng quy
Cho tam giác ABC vuông tại A .Gọi M,N lần lượt là trung điểm của AB, AC.
a) Chứng minh: Tứ giác BMNC là hình thang
b) BN và CM cắt nhau tại G. Gọi E và F lần lượt là trung điểm của BG và GC.Chứng minh : Tứ giác MNEF là hình bình hành
c) Tia AG cắt BC tại H.Chứng minh: Tứ giác AMHN là hình chữ nhật
d) Gọi K là điểm đối xứng với điểm M qua N và I là trung điểm của NH.
Chứng minh : HN,MC,BK đồng quy tại 1 điểm
Cho tam giác ABC. M, N, P lần lượt là trung điểm của AB, BC, CA. D, E, F lần lượt là trung điểm của MN, BN, CM. Chứng minh rằng: góc DEF = góc DPF
Bài 1:Cho tứ giác ABCD, M, N, I, K lần lượt là trung điểm AB, BC, CD, DA. Chứng minh MNIK là hình bình hành.
Bài 2. Cho điểm D nằm bên trong tam giác đều ABC. Vẽ các tam giác đều BDE, CDF (E, F, D nằm cùng phía đối với BC). Chứng minh rằng AEDF là hình bình hành.
Bài 3. Cho hình bình hành ABCD, hai đường chéo không vuông góc với nhau. Vẽ điểm E đối xứng với A qua BD. Chứng minh rằng 4 điểm B, C, E, D là 4 đỉnh của một hình thang cân.
Help me, mai đi hk r
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
cho tam giác ABC gọi M,N,Q lần lượt là trung điểm của AB,AC,BC và I,J,K lần lượt là trung điểm của MQ, BQ,MC . CMR: tứ giác IJKN là hình bình hành
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
1. Cho tứ giác ABCD, gọi M là trung điểm của AD. N là trung điểm của BC.
Chứng minh: a) 2MN bé hơn hoặc = AB+CD
b) trong trường hợp dấu = xảy ra, tứ giác ABCD là hình gì
2. Cho tam giác abc đều, M là điểm nằm trong tam giác, qua m kẻ các đường thẳng // vs ab,//vsbc,//ac cắt ab,ac,bc tại e,d,f
Chứng minh:a, các tứ giác bfmd, cdme, aemf là hình thang cân
b, trong 3 đoạn ma,mb,mc thì đọ dài một đoạn lớn nhất nhỏ hơn tổng độ dài 2 đoạn còn lại