Ta có hình vẽ:
Kẻ đường thẳng aa' đi qua điểm A sao cho aa' // BC
Vì AD là tia phân giác của CAB
=> \(CAD=DAB=\frac{CAB}{2}=\frac{90^o}{2}=45^o\)
Ta có: ACB = CAa' = 40o (so le trong)
Mà CAa' + CAD = DAa'
=> 40o + 45o = DAa'
=> DAa' = 85o
Do AH vuông góc với BC; aa' // BC => AH vuông góc với aa'
=> HAa' = 90o
Lại có: DAa' + HAD = HAa'
=> 85o + HAD = 90o
=> HAD = 90o - 85o
=> HAD = 5o