cho △abc, trung trực của bc cắt tia phân giác của góc a tại m. từ m lần lượt vẽ mh,mk vuông góc ab,ac.
a)c/m mh=mk
b)c/m bh=ck
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK
Tam giác ABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng :
a) \(MH=MK\)
b) \(\widehat{B}=\widehat{C}\)
Cho △ ABC vuông tại a có AB = 6cm, AC = 8cm, vẽ trung tuyến AM (M ∈ BC). Từ M kẻ MH ⊥ AC (H ∈ AC), trên tia đối của tia MH lấy điểm K sao cho MK = MH.
a) Tính cạnh BC.
b) Chứng minh △ MHC = MKB.
c) chứng minh MH là tia phân giác của góc AMC.
d) Gọi G là giao điểm của BH và AM, I là trung điểm của AB. Chứng minh I, G, C thẳng hàng.
Bài 5. Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự tại H và K. Chứng minh rằng
a) AH = AK
b) BH = CK
c) AK = \(\dfrac{AC+AB}{2}\) , CK = \(\dfrac{AC-AB}{2}\)
cho tam giác abc cân tại A từ A vẽ AM vuông góc BC tại M. Từ M vẽ MH vuông góc AB tại H MK vuông góc AC tại K
a) C/M:L tam giác ABM= tam giác ACM
b) C/M: tam giác AHM= tam giác AKM
c) C/M: AHK cân và HK//BC
Bài 3: Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB (E ϵ AB) và DF AC (F ϵ AC). Chứng minh rằng:
a) DE = DF.
b) △ BDE = △ CDF.
c) AD là đường trung trực của BC.
cho tam giác ABC cân tại a gọi là m là trung điểm của BC.
a) CM: tam giác ABM=tam giác ACM?
B)kẽ MH vông góc AB (H thuộc AB) kẽ MH vuông góc AC (K thuộc AC)
chứng minh :tam giác BHM=CKM?
Cho tam giác ABC có AB = BC vẽ BH vuong góc vs AC tại H , vẽ CK vuông góc vs AB tại K . Chứng minh :
a, BH = CK
b, BK= CH
c, chứng minh: góc KBC = góc HCB
d, tam giác KOB = tam giác HOC ( O là giao của BH và CK)
f, AO vuông góc BC
g, KH song song BC