Theo Thales có
DE//AB\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}\left(1\right)\)
Lại có EF//BC\(\Rightarrow\frac{OE}{OB}=\frac{OF}{OC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{OD}{OA}=\frac{OF}{OC}\Rightarrow\) DF//AC(thales)
Theo Thales có
DE//AB\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}\left(1\right)\)
Lại có EF//BC\(\Rightarrow\frac{OE}{OB}=\frac{OF}{OC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{OD}{OA}=\frac{OF}{OC}\Rightarrow\) DF//AC(thales)
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON.
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
cho tam giác ABC cân tại C , đường cao BD . Trên các cạnh BA , BC lấy tương ứng hai điểm E,F sao cho BE=BF=BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N , cắt BD ở K . Qua F kẻ đường thẳng song song với AC cắt AB ở M , BD ở I .
cho tam giác đều ABC, điểm M nằm trong tam giác đó. Qua M kẻ đường thẳng song song vs AC, cắt BC ở D. Kẻ đường thẳng song song vs AB và cắt AC ở E. Kẻ đường thẳng song song vs BC, cắt AB ở F. Chứng minh rằng:
a, BFMD, CDME, AEMF là các hình thang cân
b, Chứng minh góc EMD=CDM=EMF
c, Chứng minh MB<MC+MA
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu: \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân