Cho đương tròn tâm O, đường kính BC cố định và điểm A thuộc đường tròn (O). kẻ AH vuông góc BC tại H. Gọi I,K theo thứ tự là tâm đường tròn nội tiếp của tam giác AHB và AHC. Đường thẳng IK cắt AB tại M và cắt AC tại N.
a) Chứng minh tam giác AMN vuông cân
b) Xác định vị trí của điểm A để tứ giác BCNM nội tiếp
c) Chứng minh diện tích tam giác AMN nhỏ hơn hoặc bằng 1/2 diện tích tam giác ABC
Cho tam giác ABC nội tiếp đường tròn (O;R) có BC = 2R và AB < AC. Đường thẳng xy là tiếp tuyến với đường tròn (O) tại A. Tiếp tuyến tại B và C của đường tròn (O;R) lần lượt cắt đường thẳng xy ở D và E. Gọi F là trung điểm của đoạn DE.
a) Chứng minh ADBO là tứ giác nội tiếp
b) Gọi M là giao điểm thứ hai của FC với đường tròn (O;R). Chứng minh: ∠CED = 2∠AMB
c) Tính tích MC.BF theo R.
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O) và ngoại tiếp đường trong (I). Điểm D thuộc cạnh AC sao cho ABD=ACB. Đường thẳng AI cắt đường tròn ngoại tiếp tam giác DIC tại E và đường tròn (O) tại Q. Đường thẳng tại E song song với AB cắt BD tại F
a/ Chứng minh tam giác QIB cân
b/ Chứng minBP*BI=BE*BQ
Bài 10/ Cho hình vuông ABCD . Trên cạnh BC lấy điểm M , trên cạnh CD lấy điểm N . Tia AM cắt đường thẳng CD tại K .Kẻ AI vuông góc với AK cắt CD tại I
a/ Chứng minh :
b/ Biết góc MAN = 450 , CM+CN =7 cm , CM-CN =1 cm .Tính diện tích tam giác AMN
c/ Từ điểm O trong tam giác AIK kẻ OP,OQ,OR lần lượt vuông góc với IK,AK,AI (P thuộc IK, Q thuộc AK, R thuộc AI ) xác định vị trí điểm O để OP2 +OQ2 +OR2 nhỏ nhất. Tìm giá trị nhỏ nhất đó
Cho nửa đường tròn(O) đường kính AB, C là điểm chính giữa của cung AB và 1 điểm M trên cung CB . Kẻ đường cao CH của tam giác ACM.
a, Chứng minh tam giác HCM vuông cân và OH là tia phân giác của góc COM.
b, Gọi giao điểm của tia OH với CB là I và giao điểm thứ 2 của đường thẳng MI với nửa đường tròn(O) là D chứng minh MC//BD
GIÚP MÌNH VỚI!
Cho đường tròn (O) có 2 đường kính AB, CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M khác B, C . Gọi P và Q lần lượt là giao điểm của AM với CD và BC.
1, Chứng minh rằng tứ giác BMPO nội tiếp và QM . QA = QB . QC
2, Gọi E và F lần lượt là giao điểm của MD với AB, BC. H là trung điểm của FC. Chứng minh rằng tứ giác CMFP nội tiếp và \(CP=\sqrt{2}HF\)
3, Chứng minh rằng khoảng cách từ điểm Q đến 3 cạnh của tam giác EMC là bằng nhau
Bài 1. Cho tam giác AMB cân tại M nội tiếp đường tròn (O:R). Kẻ MH vuông góc với AB(H thuộc AB), MH cắt (O) tại N. Biết MA = 10cm, AB = 12cm.
1)Tính MH và bán kính R của đường tròn.
2)Trên tia đối của tia BA lấy điểm C, MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh
a, Tứ giác MDEH nội tiếp.
b, NB2 = NE.ND và AC.BE = BC.AE.
3)Chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE.
Bài 2. Cho nửa đường tròn (O) đường kính AB=2R. Điểm M di động trên đường tròn. C là trung đỉểm dây AM. Đường thẳng d là tiếp tuyến với nửa đường tròn tại B. Tia AM cắt d tại điểm N. Đường thẳng OC cắt d tại E.
1) CHứng minh OCNB nội tiếp.
2) Chứng minh AC.AN = AO.AB.
3) Chứng minh NO _|_ AE.
4) Tìm vị trí điểm M sao cho 2.AM+AN nhỏ nhất.
Cho tam giác ABC không có góc tù (AB<AC), nội tiếp đường tròn (O;R).(B,C cố định, A di chuyển trên cung lớn BC). Các tiếp tuyến B và C cắt đường tròn tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I
a) Chứng minh rằng : góc MBC = góc BAC
b) Chứng minh FI.FM=FD.FE
c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T(T khác Q), chứng minh ba điểm thẳng hàng P,T,M thẳng hàng
d)Tìm vị trí A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất
Cho tam giác ABC kẻ đường cao AH. Gọi C' là điểm đối xứng của H qua AC. Gọi giao điểm của B'C' với AB, AC theo thứ tự là I và K. Chứng minh rằng BK, CI là các đường cao của tam giác ABC.