a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
Do đó: ΔAHB\(\sim\)ΔCHA
Suy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
b: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)
=>DE=2,4(cm)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
