Xét \(\Delta ABD\) và \(\Delta ACE\) có:
+ Chung \(\widehat{A}\)
+ \(AB=AC\)
+ \(\widehat{D}=\widehat{E}\left(=90^o\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\) ( cạnh huyền \(-\) góc nhọn)
hay \(BD=CE\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
+ Chung \(\widehat{A}\)
+ \(AB=AC\)
+ \(\widehat{D}=\widehat{E}\left(=90^o\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\) ( cạnh huyền \(-\) góc nhọn)
hay \(BD=CE\)
Cho tam giác ABC có góc A < 90 độ , AB = AC. Kẻ CE vuông góc với AB(E thuộc AB). Kẻ BD vuông góc với AC( Dthuộc AC) . Gọi O là giao điểm của BD và CE. Chứng minh rằng:
a. BD = CE;
b. OE = OD và OB = OC;
c. OA là tia phân giác của góc BAC.
Cho tam giác ABC có B,C < 90 độ. Kẻ BD vuông góc với AC ( D thuộc AC). Kẻ CE vuông góc với AB ( E thuộc AB). Gọi H là giao điểm của BD và CE, nối A với H. Chứng minh: góc A + góc DHE = 180 độ
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BD // CE
Cho tam giác ABC có AB = AC. kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC,E thuộc AB). Gọi O là giao điểm của BD và CE. chứng minh : a) AD = EF b) tam giác ABD = tam giác ACE c) AO là tia phân giác của góc BAC
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BC//ED
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BC//ED
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BC//ED
GIÚP MÌNH VỚI CÁC BẠN ƠI, MÌNH CẦN GẤP. THANK NHA.
Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(Dthuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CM:
a>BD=CE
b>Tam giác OEB=tam giác ODC.
c>AO là phân giác của góc BAC.
Cho tam giác ABC , có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB); gọi Ở là giao điểm của BD và CE. Chứng minh:
a, BD=CE
b, tam giác OEB=tam giác ODC
c, AO là tia phân giác của BAC
d,H là trung điểm của BC. Chứng minh A,O,H thẳng hàng.
Cho tam giác abc có ab=ac kẻ Bd vuông góc với ac, ce vuông góc với ab (D thuộc ac, e thuộc ab) gọi o là giao điểm bd và ce
A, chứng minh tam giác BDC = Ceb