cho tam giác ABC vuông tại B.Gọi (O;R) và (i;r) lần lượt là đường tròn ngoại tiếp,nội tiếp của tam giác ABC.
a) chứng minh : AB+BC=2(R+r)
b) gọi H là chân đường cao kẻ từ B của tam giác ABC. Dựng HP vuông góc với BC tại P và HN vuông góc với AB tại N.Chứng minh rằng đường thẳng NP vuông góc với đường thẳng BO
c) tiếp tuyến tại B cắt các tiếp tuyến tại A và tại C của đường tròn (O;R) theo thứ tự tại D và E.gọi K là giao điểm của CD và AE.chứng minh rằng ba điểm B;K;H thẳng hàng.
Giúp mình giải bài này nha: cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) gọi M là 1 điểm bất kì trên cung nhỏ AC, E và F lần lượt là chân các đường vuông góc hạ từ M đến BC và AC ,P là trung điểm của AB, Q là trung điểm EF chứng minh tam giác AMB đồng dạng tam giác FMQ (đã có tam giác AMB đồng dạng tam giác FME)
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
Cho tam giác ABC có 3 góc nhọn. Đường tròn (O) có đường kính BC cắt AB,AC theo thứ tự ở D,E. Gọi I là giao điểm của BE vàCD
a, CM: AI vuông góc BC
b, CM: góc IDE = góc IAE
c, Cho góc BAC = 60°. CM: tam giác DOC là tam giác đều
Mọi người giúp em với ạ ><
cho tam giác ABC có đường cao AD, BE , CF
a. chứng minh AD, BE, CF cũng là phân giác của tam giác DEF
b. cho biết  = 72 độ, ^B= 63 độ. tính các góc của tam giác DEF
c. cho BC=12cm gọi I là trung điểm của BC; cho ^BCF = 25 độ và gọi cung của đường tròn (I;6cm) bị chắn bởi góc này là ^BmF'. tính diện tích hình quạt IBmF'
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. BH vuông góc với BC, E,F là chân các đường vuông góc kẻ từ H xuống cạnh AB và BC. I là giao điểm của È vad BO. Chứng minh rằng tam giác ABC đồng dạng với tam giác FBE
cho tam giác ABC vuông tại A ( AC>AB), AB = 3cm, góc ACB = 30. Kẻ đường cao AH trên đoạn HC lấy điểm D. Từ C kẻ C vuông góc AD. Từ D kẻ DI vuông góc AC
a, Chứng minh tứ giác CEDI, AHEC nội tiếp đường tròn. Xác định tâm và bán kính của mỗi đường tròn ngoại tiếp các tứ giác đó
b, Chứng minh EA là phân giác góc HEI
c, Tính độ dài cung HA của đường tròn ngoại tiếp tứ giác AHEC
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABF và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD
3) tính góc AIF, suy ra bốn điểm A,B,I,F cùng nằm trên một đường tròn.
4) đặt DE=x (0<x=<a). Tính độ dài các cạnh của tam giác AEK theo a và x
5) hãy chỉ ra vị trí của E sao cho độ dài EK ngắn nhất và chứng minh điều đó
cho hình chóp S.ABCD đáy là hình chữ nhật có cạnh AB=a AD=2a. gọi o là giao điểm của đường thẳng AC và BD.G là trọng tâm tam giác SAD biết SO vuông góc với mặt phẳng ABCD, góc giữa đường thẳng SC và mặt phẳng ABCD =60 độ. tính theo a khoảng cách từ điểm G đến mặt phẳng SCD.