Cho tam giác ABC nhọn. H là giao điểm của 3 đường cao AD, BE, CF.
a/ Cmr: tam giác AEF~tam giác ABC và SAEF=SBCEF trong trường hợp A=45 độ.
b/ Cmr: \(EF=AH.sinA\)
C/ \(\dfrac{S_{HBC}}{tanA}=\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\)
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM .Biết AH = 3cm, HB = 4 cm. Hãy tính AB AC AM , và diện tích tam giác ABC .
Cho tam giác ABC vuông tại A, đường cao AH = \(\dfrac{\sqrt{6}}{3}\), đường trung tuyến CM = \(\dfrac{3}{2}\) AB. Tính AB, AC, BC
Bài 1 : Cho tam giác ABC vuông tại A hãy viết tỉ số lượng giác CosB và cotC Bài 2 :. Cho tam giác ABC vuông tại A có đường cao AK chia cạnh huyền BC thành hai đoạn KB=3 cm và KC=9 cm a) Tỉnh độ dài các đoạn thẳng: BC,AB b) Tính độ dài đoạn thẳng AK c) Trên cạnh AC lấy điểm M ( M khác A và C ). Gọi H là hình chiếu cùa A trên BM. Chứng minh rằng BH .BM=BK . BC
Cho tam giác ABC nhọn, đường cao CK, H là trực tâm. M thuộc CK sao cho góc AMB = 90 độ. Gọi S,S1, S2 theo thứ tự là diện tích các tam giác AMB, ABC, ABH. Chứng minh: \(S=\sqrt{S_1.S_2}\)
Cho tam giác ABC vuông tại A, đường cao AH= \(\dfrac{2\sqrt{5}}{5}\) , diện tích tam giác ABC bằng 1. Tính AB, AC, BC.
Cho tam giác ABC vuông tại A ( AB < AC ) có đường cao AH và AH = 12 cm , BC = 25 cm
a) Tính độ dài BH ,CH ,AB ,AC
b) Vẽ trung tuyến AM . Tìm số đo của góc AMH
c) Tính diện tích của tam giác AHM
Giúp mình với cố xong trước 9h nhé
cho tam giác vuông tại A có đường cao AH.Hãy tính lần lượt các độ dài các đoạn BH,HC,AH,AC nếu biết:
a)AB=6cm;BC=10cm
b)AB=\(\sqrt{3}cm\);BC=2cm
c)AB=5cm,BC=1dm
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC