Xét t/g BEDC ta có góc BEC (90độ) + góc BDC (90độ) = 180 độ
suy ra t/g BEDC nội tiếp
ta có t/g BEDC nt nên suy ra góc DEA=góc DCB ( góc trong = góc ngoài ở đỉnh đối diện )
suy ra góc DEA = ACB
câu b mk hk chak cho lắm
Xét t/g BEDC ta có góc BEC (90độ) + góc BDC (90độ) = 180 độ
suy ra t/g BEDC nội tiếp
ta có t/g BEDC nt nên suy ra góc DEA=góc DCB ( góc trong = góc ngoài ở đỉnh đối diện )
suy ra góc DEA = ACB
câu b mk hk chak cho lắm
cho tam giác abc nhọn nối tiếp đường tròn o đường cao BD , CE cắt nhau tại H . AH cắt đường tròn tâm O tại K cắt BC tại M
a, cm Tứ giác BEDC nội tiếp
b, cm AE.AB=AD.AC và DH là phân giác góc EDM
c, KD cắt ( O ) tại Q . cm tam giác HMD ~ tam giac EBD , BQ đi qua trung điểm của DE
Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = R^2 ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .
Câu 4. (2,0 điểm) Cho đường tròn (0; 2, 5cm) có dây BC = 3c cố định. Trên cung lớn BC lấy điểm A bất kì sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H (D in AC E AB). 1) Chứng minh tứ giác BEDC là tứ giác nội tiếp. 2) Kẻ đường kinh AK của đường tròn (O; R) Chứng minh: góc EDB = góc CBK . 3) Tính bán kính đường tròn ngoại tiếp tam giác DEH.
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
Cho tam giác ABC nhọn, có AB<AC. vẽ đường cao AD, đường phân giác AO của tam giác ABC, vẽ (O) tiếp xúc với AB,AC lần lượt ở M,N. a)cm:M,N,O,D,A cùng thuộc 1 đ tròn. b)CM: góc BMD =góc CDN. c) qua O kẻ đường thẳng vuông góc với BC cắt MN ở I. AI cắt BC ở K. cm: K là trung điểm của BC.
cho tam giác ABC, nội tiếp đường tròn O. hai dường cao BD và CE cắt nhau tại H. tia BD cắt đường tròn tại M. tia CE cắt đường tròn tại N
Chứng minh
a. tứ giác BCDE nội tiếp
b, tam giác ADB đồng rạng với tam giác ACE, từ đó suy ra AE.AB = AB.AC
c, AO vuông góc với MN