Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy
Cho tam giác ABC nhọn, gọi M là trung điểm BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. Từ M kẻ MI vuông góc với EC; MH vuông góc với AB. Chứng minh :
a) AB=EC
b) MI=MH
c) M là trung điểm HI
d) vẽ AP vuông góc với AB; AP=AB sao cho 2 điểm C và P nằm trên 2 mặt phẳng đối nhau bờ AB
vẽ AQ vuông góc với AC; AQ=AC sao cho 2 điểm Q và B nằm trên 2 nửa mặt phẳng đối nhau bờ AC.
Chứng minh BQ vuông góc với CP
Cho tam giác ABC có AB = AC ,góc A nhon. Goi H là trung điểm của BC. Gọi D và E lần lượt là trung điểm của AB và AC.
a) Chứng minh DE song song BC
b) Trên tia đối của tia DH lấy M sao cho BH = CM. chứng minh AM = BH
Trên tia đối của tia EH lấyN sao cho EH= EN. Chứng minh A là trung điểm của đoạn MN
Viết giả thiết, kết luận của bài toán
BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH
Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :
a) AE = BC; b)AB // EC
Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC
Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng
a) C là trung điểm của AB
b) AB vuông góc với OC
Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE
Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA
a) Tính số đo góc ABK
b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK
c) Chứng minh MA vuông góc với DE
Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC
Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC
Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC
a) Chứng minh rằng DE vuông góc với BC
b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :
a) FH = 2DE.
b) FH vuông góc với DE.
Cho tam giác ABC; góc A=90 độ(AB > AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc BC tại H trên tia đối HA lấy E sao cho HE = HA. Chứng minh rằng:
a) CD vuông góc với AC
b) BD = CE
c) BD = CE
d) Cho góc MAE = góc MEA và góc MDE = góc MED. Chứng minh AE vuông góc ED
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
cho tam giác ABC có M là trung điểm của BC D là trung điểm của AB.trên tia đối của tia MA lấy điểm E sao cho ME=MA.trên tia đối của tia DE lấy điểm F sao cho DF=DE.chứng minh rằng BE=AC
cho tam giác ABC vuông góc tại A gọi M là Trung điểm của BC trên tia đối MA lấy E sao cho ME=MA Chứng Minh :
a) AB=CE
b) CE vuông góc AC
c) tam giác ABC= tam giác CEA