a.
Xét \(\Delta ABH;\Delta DHB\) có :
\(AH=BD\left(gt\right)\\ \widehat{AHB}=\widehat{DBH}\left(=90^0\right)\\ BH\left(chung\right)\\ \Rightarrow\Delta AHB=\Delta DBH\left(c-g-c\right)\\ \)
b.
\(\Delta AHB=\Delta DBH\left(cmt\right)\\ \Rightarrow\widehat{ABH}=\widehat{DHB}\)
=> AB // DH
c.
\(\Delta ABH=\Delta DHB\left(cmt\right)\\ \Rightarrow\widehat{BDH}=\widehat{BAH}=35^0\\ \Rightarrow\widehat{ABC}=55^0\\ \Rightarrow\widehat{ACB}=35^0\)