1) Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(3;-4). Tìm tọa độ điểm C sao cho tam giác ABC vuông tại C và có góc B bằng 60o.
2) Cho tam giác ABC có góc nhọn B, AD và CE là hai đường cao.
Biết rằng SABC = 9SBDE, DE=2\(\sqrt{2}\) . Tính cosB và bán kính đường tròn ngoại tiếp tam giác ABC.
Cho tam giác ABC có a = 4, b = 3, c = 2, M là trung điểm của AC. Tính bán kính đường tròn ngoại tiếp tam giác BCM.
Cho tam giác ABC
a) Biết \(\widehat{A}\) = 90°, \(\widehat{B}\) = 58°, a = 72cm. Tính \(\widehat{C}\), cạnh b, cạnh c và đường cao ha
b) Biết a = 52,1cm, b = 85cm, c = 54cm. Tính các góc A,B,C
c) Biết a = 3, b = 4, c = 6. Tính diện tích của tam giác ABC
Biết a = 8, b = 10, c = 13. Tam giác có góc tù không? Và tính ma của tam giác ABC
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)