Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a, Chứng minh AH = MN b, Chứng minh tam giác AHM đồng dạng với tam giác AHB rồi suy ra AH^2 = AM . AB c, Chứng minh tam giác AMN đồng dạng với tam giác ACB d, Cho AB = 6cm, AC = 8cm. Tính diện tích của tam giác AMN.
cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm. đường cao AH và phân giác BDcắt nhau tại I (H trên BC và D trên AC)
a)tính độ dài AD,DC
b)Chướng minh tam giác ABC đồng dạng tam giác HBA và AB2=BH.BC
c)chứng minh tam giác ABI đồng dang với tam giác CBD
Cho tam giác ABC vuông tại A, AB=6cm,AC=8cm, đường cao AH (H thuộc BC)
a) Tính BC
b) Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
c) Gọi BD là đường phân giác của góc B ( D thuộc AC). Tính DA,DC
Giải giúp em gấp ạ! Cảm ơn
Cho tam giác ABC cân tại A ( A<90 độ), O thuộc BC. Trên cạnh AB, AC lấy M và N sao cho MON=ABC. Chứng minh tam giác BMO đồng dạng với tam dạng CON
Cho tam giác ABC vuông tại C (AC<BC). Vẽ tia phân giác Ax của BAC cắt cạnh BC tại I. Vẽ BH vuông góc tại Ax tại H.
a) Chứng minh tam giác AIC đồng dạng tam giác ABH
b) Chứng minh HB 2 = HI.HA
c) Kẻ đường cao CK của tam giác ABC> Kẻ KD là đường phân giác của tam giác CKA. Chứng minh \(\dfrac{CD}{DA}=\dfrac{CB}{CA}\)
Xin hãy giúp mình với ạ! Mình xin cám ơn!
Cho hình thang ABCD có \(\widehat{A}=\widehat{D}=90^{\bigcirc}\), hai đường chéo AC và BD vuông góc với nhau. Biết AB=4cm, CD=9cm.
a) Chứng minh hai tam giác ADB ∼ DCA.
b) Tính độ dài AD.
c) Gọi M là giao điểm của AD và BC. Tính diện tích tam giác AMB
1.Cho hình thanh ABCD (AB//CD) có góc DAB = góc DBC. Chứng minh tam giac ABD ~ tam giac BDC
2.Cho tam giác ABC, D thuộc cạnh AC sao cho góc ABD = góc C. Chứng minh tam giac ABC~ tam giác ADB
Cho tam giác ABC có ba góc nhọn, AB=2cm, AC=4cm. Trên cạnh AC lấy điểm M sao cho góc ABM bằng góc ACB.
a) CMR: ΔABM∼ΔACB.
b) Từ A kẻ AH⊥BC, AK⊥BM. CMR:\(S_{AHB}=4S_{AKM}\)
Cho tam giác ABC có ba góc nhọn, AB=2cm, AC=4cm. Trên cạnh AC lấy điểm M sao cho góc ABM bằng Góc ACB.
a) CMR: ΔABM∼ΔACB.
b) Từ A kẻ AH⊥BC, AK⊥BM. CMR:\(S_{AHB}=4S_{AKM}\)