Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
cho tam giác abc vuông tại a,kẻ ah vuông góc với bc tại h.trên tia đối của tia ha lấy điểm m sao cho hm = ha a,chứng minh tam giác ahc = tam giác mhc và ch là tia phân giác của góc acm b,kẻ đường thẳng mx song song với ac cắt đường thẳng bc tại d.chứng minh tam giác ahc = tam giác hmd và am là đường trung trực của dc c,gọi e,f lần lượt là trung điểm của ac,dm.chứng minh h là trung điểm của ef
3:Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại K . Từ K vẽ KH BC ( HBC)
a) Cho AB = 6cm, BC = 10cm. Tính AC .
b) Chứng minh ABK = HBK.
c) Trên tia đối tia AB lấy điểm I sao cho AI= HC. Chứng minh I, H, K thẳng hàng.
d) Chứng minh AH // CI
Cho tam giác MNP vuông tại M có MP = 6 cm, MN = 8 cm. Kẻ PK là phân giác góc MPN(K thuộc MN). Trên cạnh PN lấy điểm E sao cho PE = PM .
a) Tính độ dài PN b)Chứng minh và
c)Gọi D là giao điểm của tia EK và tia PM. Chứng minh KD = KN
d)Chứng minh tam giác PDN cân
e) Tìm điều kiện của tam giác MNP để tam giác PDN đều
CHO TAM GIÁC ABC . TRÊN TIA ĐỐI CỦA AB LẤY AD=AB . GỌI BI,EJ LÀ CÁC ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ABC VÀ TAM GIÁC ADE .
CHỨNG MINH;
A) GÓC ABI = GÓC AEJ
B) BI=EJ
cho tam giác abc cân tại a,trên tia đối của tia bc lấy điểm d,trên tia đối của tia cb lấy điểm e sao cho bd=ce.kẻ bh vuông góc với ad tại h,kẻ ck vuông góc với ae tại k.chứng minh tam giác bhd=tam giác cke
Bài 5. Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự tại H và K. Chứng minh rằng
a) AH = AK
b) BH = CK
c) AK = \(\dfrac{AC+AB}{2}\) , CK = \(\dfrac{AC-AB}{2}\)