Cho tam giác ABC vầ các điểm D,E,F lần lượt nằm trên cạnh BC,CA,AB sao cho AD,BE,CF đồng quy,cmr: DB/DC.EC/EA.FA/FB=1
Cho tam giác ABC vuông tại A,lấy D thuộc AB,E thuộc AC,F thuộc BC sao cho AD=AE,CE=CF. Tính góc DEF
Cho tam giác ABC đều có O là trung điểm cạnh BC. Vẽ góc xOy=60 độ sao cho các tia Ox, Oy cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:
a) BC2 = 4. BE . FC
b) EO là phân giác góc BEF
Cho tam giac ABC vuông tại B, trên các cạnh AB,BC,AC lần lượt lấy các điểm D,F và E sao cho AD = AE, CF = CE. Tính số đo góc DEF
Cho tam giác ABC. Gọi E, F lần lượt là trung điểm của AC, AB; D là một điểm bất kỳ trên BC. Điểm P nằm trên BF sao cho DP//CF. Điểm Q nằm trên CE sao cho DQ//BE. Đoạn PQ cắt BE ở R và cắt CF ở S. Chứng minh RS=PQ/3
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
cho tam giác ABC và điểm O nằm trong tam giác. AO, BO, CO cắt BC, CA , AB lần lượt tại D, E, F . Chứng minh rằng :
1) OD/AD = S bdo / S bda = S cdo / S cda