Cho tam giác ABC ,^B ,^C nhọn , đường cao AH.Dựng phía ngòa tam giác ABC các tam giác vuông cân tại A là ABD , ACE .Gọi M là trung điểm của DE.Tìm các vec-tơ cùng hướng vs vec-tơ MA
Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Gọi M là một điểm bất kì thuộc cung BC.
a) Chứng minh rằng MA = MB + MC
b) Gọi D là giao điểm của MA và BC. Chứng minh rằng \(\frac{MD}{MB}+\frac{MD}{MC}=1\)
c) Tính tổng MA^2 + MB^2 MC ^2 theo R.
1. Cho tam giác ABC. Gọi AM và AD lần lượt là các đường trung tuyến và phân giác trong góc A. Đường thẳng đối xứng với AM qua phân giác AD cắt BC tại N. Chứng minh rằng \(\frac{BN}{CN}=\frac{AB^2}{AC^2}\)
2.Cho hai đường tròn đồng tâm O có bán kính R và r. A và M là hai điiểm thuộc đường tròn nhỏ (A chuyển động, M cố định). Qua điểm M vẽ dây BC của đường tròn lớn sao cho BC vuông góc với AM. Cmr:
a) Tổng \(MA^2+MB^2+MC^2\)không phụ thuộc vào vị trí điểm A
b)Tọng tâm G của tam giác ABC là điểm cố định
Giúp mình !!!!!!!!
1. Tam giác ABC với D,E,F lần lượt thuộc cạnh BC,CA,AB sao cho AD,BE,CF đồng quy tại M. chứng minh \(\frac{DM}{AD}+\frac{FM}{CF}+\frac{EM}{BE}=1\)
2. Tam giác ABC với M tùy ý nằm trong tam giác. Đường thẳng đi qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A',B',C'. chứng minh: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
3. Tam giác nhọn ABC, phân giác AD. M,N lần lượt là hình chiếu của D trên AC,AB, P là giao điểm BM, CN. chứng minh AP vuông góc BC
1 cho tam giác abc có 3 góc nhọn.kẻ các đường cao AH,BI,CK.Tính tỉ số diện tịhs các tam giác HIK và ABC
2 cho tam giác nhọn abc.Trên các cạnh AB,BC,CA ta lấy theo thứ tự 3 điểm M,N,P sao cho \(\frac{AM}{AM}=\frac{BN}{BC}=\frac{CP}{CA}=\frac{1}{4}\).Gọi S là diện tích tam giác abc, D là giao điểm của AN và CM,E là giao điểm của AN và BP,F là giao điểm của BP và CM.Tính theo S, diện tích của
a)tam giác MNP
b)tam giác DEF
3.cho tam giác nhon abc và 1 điểm thuộc miền trong của tam giác. Gọi D,E,F theo thứ tự là hình chiếu của P trên các cạnh BC,CA,AB
a)chứng minh BD2+DC2=\(\frac{BC^2}{2}\).
b)xác định vị trí điểm P trong tam giác abc để tổng DC2+EA2+FB2 đạt giá trị nhỏ nhất.
2) cho tam giác ABC có độ dài các cạnh là a;b;c nội tiếp đường tròn tâm R .gọi x;y;z là khoảng cách từ điểm M thuộc miền trong của tam giác ABC đến các cạnh AB;AC;BC . Chứng minh \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)
1) Tìm các số nguyên dương a và b sao cho a2 + 5a + 12 = (a + 2)b2 + (a2 + 6a + 8)b
2) Cho đường tròn (Q) cố định. M là một điểm nằm ngoài đường tròn. Từ M kẻ 2 tiếp tuyến MN và MP tới (Q). Biết rằng M thay đổi sao cho góc NMP luôn bằng 600. CMR: M thuộc một đường tròn cố định.
3) Cho đường tròn (O) tiếp xúc với các cạnh BC, CA, AB của tam giác ABC lần lượt tại D, E, F. Chứng minh rằng tam giác có ba cạnh bằng AE, BF, CF là tam giác vuông nếu \(\frac{BC}{9}=\frac{AC}{8}=\frac{AB}{7}\)
Mọi người giúp mình với ah!!! CẦN GẤP!!! THKS NHIỀU AH!!!
Cho tam giác ABC đều cạnh a.
a Cho M là 1 điểm nằm trên đường tròn ngoại tiếp tam giác ABC. Tính MA2 + MB2 + MC2
b Cho đương thằng d tùy ý. Tìm N thuộc d sao cho NA2 + NB2 + NC2 nhỏ nhất
Bài 2 : Cho tam giác ABC đều cạnh 6cm . M thuộc BC sao cho BM = 2cm
a Tính độ dài AM và cos góc BAM
b Tính bán kính đường tròn ngoại tiếp tam giác ABM
c Tính độ dài trung tuyến CN của tam giác ACM
d Tính diện tích ABM
cho tam giác nhọn abc.Trên các cạnh AB,BC,CA ta lấy theo thứ tự 3 điểm M,N,P sao cho \(\frac{AM}{AM}=\frac{BN}{BC}=\frac{CP}{CA}=\frac{1}{4}\).Gọi S là diện tích tam giác abc, D là giao điểm của AN và CM,E là giao điểm của AN và BP,F là giao điểm của BP và CM.Tính theo S, diện tích của
a)tam giác MNP
b)tam giác DEF
3.cho tam giác nhon abc và 1 điểm thuộc miền trong của tam giác. Gọi D,E,F theo thứ tự là hình chiếu của P trên các cạnh BC,CA,AB
a)chứng minh BD2+DC2=\(\frac{BC^2}{2}\).
b)xác định vị trí điểm P trong tam giác abc để tổng DC2+EA2+FB2 đạt giá trị nhỏ nhất.