Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
a; Xét tứ giác CDHE có \(\hat{CDH}+\hat{CEH}=90^0+90^0=180^0\)
nên CDHE là tứ giác nội tiếp đường tròn đường kính CH
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\hat{EHA}=\hat{DHB}\) (Hai góc đối đỉnh)
Do đó: ΔHEA~ΔHDB
=>\(\frac{HE}{HD}=\frac{HA}{HB}\)
=>\(HE\cdot HB=HD\cdot HA\)
c: Gọi O là trung điểm của AB
=>O là tâm đường tròn đường kính AB
ΔEAB vuông tại E
mà EO là đường trung tuyến
nên OE=OB
=>ΔOBE cân tại O
=>\(\hat{OEB}=\hat{OBE}\)
Gọi K là giao điểm của CH và AB
Xét ΔCAB có
AD,BE là các đường cao
AD cắt BE tại H
Do đó: H là trực tâm của ΔCAB
=>CH⊥AB tại K
Vì I là tâm đường tròn ngoại tiếp tứ giác CDHE
nên I là trung điểm của CH
=>IE=IH
=>ΔIEH cân tại I
=>\(\hat{IEH}=\hat{IHE}\)
=>\(\hat{IEH}=\hat{KHB}\)
\(\hat{IEH}+\hat{OEB}=\hat{IEO}\)
=>\(\hat{IEO}=\hat{KHB}+\hat{KBH}=90^0\)
=>EO⊥EI tại E
=>EI là tiếp tuyến của (O)
hay EI là tiếp tuyến của đường tròn đường kính AB