Có:\(BC^2=5^2;AB^2+AC^2=3^2+4^2=25=5^2\)
Vậy tam giác ABC vuông tại A.
\(\Rightarrow\)BC là đường kính đường tròn nội tiếp tam giác ABC.
Vậy bán kính đường tròn nội tiếp tam giác ABC bằng =2,5(đvđd)
Có:\(BC^2=5^2;AB^2+AC^2=3^2+4^2=25=5^2\)
Vậy tam giác ABC vuông tại A.
\(\Rightarrow\)BC là đường kính đường tròn nội tiếp tam giác ABC.
Vậy bán kính đường tròn nội tiếp tam giác ABC bằng =2,5(đvđd)
Cho tam giác ABC có các cạnh BC = a, CA = b, AB = c. Gọi r là bán kính đường tròn nội tiếp, S là diện tích tam giác ABC.
a) Chứng minh : \(S=\dfrac{r\left(a+b+c\right)}{2}\)
b) Tính bán kính đường tròn nội tiếp của tam giác ABC. Biết tam giác ABC là tam giác cân có cạnh đáy bằng 16 cm, cạnh bên bằng 10 cm.
cho tam giác abc có góc a bằng 90 độ. hai đường phân giác các góc B và C cắt nhau tại biết I. AB=5 AC=12. Tính độ dài bán kính đường tròn nội tiếp tam giác ABC
Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.![]()
Cho tam giác ABC vuông tại A có đường cao AH, trên cạnh BC lấy 2 điểm E, F sao cho CE=CA; BF=AB. Gọi I, K, L lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm BI với AC. Chứng minh
a) IE=IF.
b) Giả sử AB=3, AC=4. TÌm khoảng cách từ I,K,L tới BC
Cho tam giác đều ABC , cạnh a , H là trực tâm
a) Tâm của đường tròn ngoại tiếp tam giác ABC là điểm nào
b) Tính bán kính của đường tròn đó theo a
c) Gọi K là điểm đối xứng với H qua BC. Xác định vị trí tương đối của điểm K với đường tròn đó
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF. Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF
a, tính tổng \(^{AE^2}\)+\(^{EF^2}\) theo R
b, Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cảm ơn bạn ạ
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp