cho tam giác ABC cân tại A,kẻ BH vuông góc AC(H thuộcAC)Tính BC biết HA=1cm,HC=8cm
+ Vì M là trung điểm của \(AC\left(gt\right)\)
=> \(AM=CM=\frac{1}{2}AC\) (tính chất trung điểm).
=> \(AM=CM=\frac{1}{2}.16=\frac{16}{2}=8\left(cm\right).\)
+ Vì \(\Delta ABC\) cân tại \(B\left(gt\right)\)
Có \(BM\) là đường trung tuyến (vì M là trung điểm của \(AC\)).
=> \(BM\) đồng thời là đường cao của \(\Delta ABC.\)
=> \(BM\perp AC.\)
+ Xét \(\Delta ABM\) vuông tại \(M\left(cmt\right)\) có:
\(BM^2+AM^2=AB^2\) (định lí Py - ta - go).
=> \(BM^2+8^2=17^2\)
=> \(BM^2=17^2-8^2\)
=> \(BM^2=289-64\)
=> \(BM^2=225\)
=> \(BM=15\left(cm\right)\) (vì \(BM>0\)).
Vậy \(BM=15\left(cm\right).\)
Chúc bạn học tốt!