Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huyền Anh Kute

Cho tam giác ABC cân tại A,đường cao AD. Từ D kẻ DE vuông góc với AB,DF vuông góc với AC Trên tia đối của tia DE lấy điểm M sao cho DE = DM. Chứng minh:

a, BE=CF

b, AD là trung trực của đoạn thẳng EF

c, Tam giác EFM là tam giác vuông

d, BE//CM

Help me!!!

Lê Vương Kim Anh
1 tháng 7 2017 lúc 20:14

a) Vì \(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)

mà AD là đường cao

=> AD là đường trung tuyến \(\Delta ABC\)

=> BD = DC

Xét \(\Delta BED\)\(\Delta CFD\) có:

\(\widehat{BED}=\widehat{CFD}\left(90^0\right)\)

BD = DC (cmt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

Do đó: \(\Delta BED=\Delta CFD\left(ch-gn\right)\)

=> BE = CF (hai cạnh tương ứng)

b) Vì \(\Delta BED=\Delta CFD\left(cmt\right)\)

=> ED = DF (hai cạnh tương ứng)

=> \(\Delta EDF\) cân tại D

=> D \(\in\) đường trung trực cạnh EF (1)

Xét \(\Delta AED\)\(\Delta AFD\) có:

AD (chung)

\(\widehat{AED}=\widehat{AFD}\left(=90^0\right)\)

ED = DF (cmt)

Do đó: \(\Delta AED=\Delta AFD\) (cạnh huyền- cạnh góc vuông)

=> AE = AF(hai cạnh tương ứng)

=> \(\Delta AEF\) cân tại A
=> A \(\in\) đường trung trực cạnh EF (2)

(1); (2) => AD là đường trung trực cạnh EF

c) ta có: AD \(\perp\) BC và \(AD\perp EF\)

=> BC // EF

Gọi giao điểm của FM và DC là H ta có:

Xét \(\Delta BED\)\(\Delta CMD\) có:

ED = DM (gt)

\(\widehat{EDB}=\widehat{CDM}\) (đối đỉnh)

BD = DC (cmt)

Do đó: \(\Delta BED=\Delta CMD\) (c-g-c)

\(\Delta BED=\Delta CFD\)

=> \(\Delta CMD=\Delta CFD\)

=> CF = CM (hai cạnh tương ứng)

=> \(\Delta FCM\) cân tại C

=> C \(\in\)đường trung trực cạnh FM (1)

DE = DF (cmt)

mà DE = DM

=> DF = DM

=> \(\Delta FDM\) cân tại D

=> D \(\in\) đường trung trực cạnh FM (2)

(1); (2) => DC là đường trung trực cạnh FM

=> DH \(\perp\) FM

mà BC // EF

=> EF \(\perp\) FH

=> \(\widehat{EFM}=90^0\) hay \(\Delta EFM\) vuông tại F

d) Vì \(\Delta BED=\Delta CMD\)

=> \(\widehat{BED}=\widehat{CMD}=90^0\)(hai góc tương ứng)

=> BE//CM(so le trong)

Đức Hiếu
1 tháng 7 2017 lúc 10:42

Ns trước cách làm nếu không hiểu thì hỏi mình nha.

a, Tam giác BDE=tam giác CDF (cạnh huyền - góc nhọn) cm AD đồng thời là đường cao và đường trung tuyến.

b, AD là trung trực.

Cm: AD đồng thời là đường cao đồng thời là đường trung trực

c, chứng minh ba cạnh DE=DF=DM

=> tam giác EFM vuông do trong tam giác đường trung tuyến ứng với 1 cạnh bằng nửa cạnh ấy thì tam giác đó vuông.

d, Chứng minh tam giác BED=tam giác CMD(c.g.c)

=> BE//CM

Chúc bạn học tốt!!!

caikeo
5 tháng 7 2018 lúc 22:16

ΔABCΔABC cân tại A => Bˆ=CˆB^=C^

mà AD là đường cao

=> AD là đường trung tuyến ΔABCΔABC

=> BD = DC

Xét ΔBEDΔBEDΔCFDΔCFD có:

BEDˆ=CFDˆ(900)BED^=CFD^(900)

BD = DC (cmt)

Bˆ=Cˆ(cmt)B^=C^(cmt)

Do đó: ΔBED=ΔCFD(ch−gn)ΔBED=ΔCFD(ch−gn)

=> BE = CF (hai cạnh tương ứng)

b) Vì ΔBED=ΔCFD(cmt)ΔBED=ΔCFD(cmt)

=> ED = DF (hai cạnh tương ứng)

=> ΔEDFΔEDF cân tại D

=> D ∈∈ đường trung trực cạnh EF (1)

Xét ΔAEDΔAEDΔAFDΔAFD có:

AD (chung)

AEDˆ=AFDˆ(=900)AED^=AFD^(=900)

ED = DF (cmt)

Do đó: ΔAED=ΔAFDΔAED=ΔAFD (cạnh huyền- cạnh góc vuông)

=> AE = AF(hai cạnh tương ứng)

=> ΔAEFΔAEF cân tại A
=> A ∈∈ đường trung trực cạnh EF (2)

(1); (2) => AD là đường trung trực cạnh EF

c) ta có: AD ⊥⊥ BC và AD⊥EFAD⊥EF

=> BC // EF

Gọi giao điểm của FM và DC là H ta có:

Xét ΔBEDΔBEDΔCMDΔCMD có:

ED = DM (gt)

EDBˆ=CDMˆEDB^=CDM^ (đối đỉnh)

BD = DC (cmt)

Do đó: ΔBED=ΔCMDΔBED=ΔCMD (c-g-c)

ΔBED=ΔCFDΔBED=ΔCFD

=> ΔCMD=ΔCFDΔCMD=ΔCFD

=> CF = CM (hai cạnh tương ứng)

=> ΔFCMΔFCM cân tại C

=> C ∈∈đường trung trực cạnh FM (1)

DE = DF (cmt)

mà DE = DM

=> DF = DM

=> ΔFDMΔFDM cân tại D

=> D ∈∈ đường trung trực cạnh FM (2)

(1); (2) => DC là đường trung trực cạnh FM

=> DH ⊥⊥ FM

mà BC // EF

=> EF ⊥⊥ FH

=> EFMˆ=900EFM^=900 hay ΔEFMΔEFM vuông tại F

d) Vì ΔBED=ΔCMDΔBED=ΔCMD

=> BEDˆ=CMDˆ=900BED^=CMD^=900(hai góc tương ứng)

=> BE//CM(so le trong)

Tuyết Nhi Melody
1 tháng 7 2017 lúc 10:31
Hoàng Thị Ngọc Anh
1 tháng 7 2017 lúc 19:25

Đây nhé! Câu c và d, ko hiểu thì nói nhé!

c) Theo câu a) \(\Delta BED=\Delta CFD\)

\(\Rightarrow ED=FD\)

\(ED=DM\left(gt\right)\Rightarrow ED=FD=DM\)

\(\Rightarrow ED=\dfrac{1}{2}\left(FD+DM\right)\)

\(\Rightarrow ED=\dfrac{1}{2}EM\)

\(\Rightarrow\Delta EFM\) vuông tại F (chỉ trong tg vuông đoạn thẳng nối từ đỉnh góc vuông đến cạnh huyền bằng nửa cạnh huyền)

d) Xét \(\Delta BED;\Delta CMD:\)

\(ED=MD\left(gt\right)\)

\(\widehat{BDE}=\widehat{CDM}\left(đ^2\right)\)

\(BD=CD\) (AD là trung tuyến ở câu a)

\(\Rightarrow\Delta BED=\Delta CMD\left(c.g.c\right)\)

\(\Rightarrow\widehat{BED}=\widehat{CMD}\)

mà 2 góc này ở vị trí so le trong \(\Rightarrow BE\) // CM.


Các câu hỏi tương tự
Nguyễn Hà Phương
Xem chi tiết
Đinh Thành Đạt
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết
Tống Phú Lâm
Xem chi tiết
lequangha
Xem chi tiết
Nguyễn Thị Thu Uyên
Xem chi tiết
Ngân Phùng
Xem chi tiết
Hoàng Lan
Xem chi tiết
Nguyễn Thị Ngọc Bảo
Xem chi tiết