a: Xét ΔAKH vuông tại K và ΔAMH vuông tại M có
AH chung
\(\widehat{KAH}=\widehat{MAH}\)
Do đó: ΔAKH=ΔAMH
b: Ta có; ΔAKH=ΔAMH
=>AK=AM
=>ΔAKM cân tại A
Xét ΔABC có \(\dfrac{AK}{AB}=\dfrac{AM}{AC}\)
nên KM//BC
a: Xét ΔAKH vuông tại K và ΔAMH vuông tại M có
AH chung
\(\widehat{KAH}=\widehat{MAH}\)
Do đó: ΔAKH=ΔAMH
b: Ta có; ΔAKH=ΔAMH
=>AK=AM
=>ΔAKM cân tại A
Xét ΔABC có \(\dfrac{AK}{AB}=\dfrac{AM}{AC}\)
nên KM//BC
cho tam giác ABC cân tại A [góc A nhỏ hơn 90 độ ].Kẻ BD vuông góc AC [D thuộc AC ],CE vuông góc AB [E thuộc AB ],BD và CE cắt nhau tại H.
a] chứng minh tam giác ABD = tam giác ACE
b] Chứng minh tam giác BHC cân
c] chứng minh ED song song BC
d] AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.
a,CM:BD=DE
b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED
c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân
d,CM: DN và CK cắt nhau tại trung điểm mỗi đường
Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK
a,CM:Tam giác ABK cân và Tam giác ACK cân
b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE
c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng
d,Tìm điều kiện của Tam giác ABC để AB song song QK
Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)
a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC
b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA
c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN
d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm
Các bạn giúp mình với . 6h là mình phải nộp rồi
Bạn nào nhanh thì mình tích cho
Giúp mình nhanh nha
Cho tam giác ABC cân tại A ( góc A < 90° ) . Kẻ BD vuông góc với AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ) , BD và CE cắt nhau tại H .
a ) Chứng minh : Tam giác ABD = tam giác ACE
b ) Chứng minh : Tam giác BHC cân
c ) Chứng minh : ED song song với BC
d ) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . Chứng minh : Tam giác ACM vuông .
Các bạn giúp mình với, mình cần gấp PHẦN D
Cho tam giác ABC cân tại A(^A<90 độ). Kẻ BD vuông góc với AC;CE vuông góc với AB (D thuộc AC;E thuộc AB) BD và CE cắt nhau tại H. CMR:
a, Tam giác ABD=tam giác ACE
b, Tam giác BHC cân
c, ED song song với BC
d. AH giao BC tại K. Trên tia HK lấy M sao cho K là trung điểm của HM. Chứng minh: Tam giác ACM vuông
cho tam giác ABC cân tại A [góc A nhỏ hơn 90 độ ].Kẻ BD vuông góc AC [D thuộc AC ],CE vuông góc AB [E thuộc AB ],BD và CE cắt nhau tại H.
a] chứng minh tam giác ABD = tam giác ACE
b] Chứng minh tam giác BHC cân
c] chứng minh ED song song BC
d] AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông
Giúp mình với nhanh nhánh nha thank các bn trước nha
cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC )
a) cm tam giác AHB = tam giác AHC
b) giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c) trên tia đối của tia HA lấy điểm M sao cho HM = HA . Cm tam giác ABM cân
d) Cm BM song song AC
Cho tam giác ABC cân tại A (góc A < 90°). Vẽ AH vuông góc BC tại H
A) cm rằng : tam giác ABH = tam giác ACH rồi suy ra AH là tia phân giác góc A
B) từ H vẽ HE vuông góc AB tại E, HF vuông góc AC tại F .Cm rằng tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân .
C) Đường thẳng vuông góc với AC tại C cắt tia AH tại K. Cm rằng EH // BK
D) Qua A vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm M sao cho HM =HN. Chứng minh rằng M,A,N thẳng hàng
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CM : tam giác ACM vuông
Cho tam giác ABC cân tại A ( góc A < 90o ) . Kẻ BD vuông góc cới AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . CM : tam giác ACM vuông