Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
Cho tam giác ABC cân tại A, BC=2a. Gọi M là trung điểm của BC. Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho DM là tia phân giác của góc BDE. Chứng minh :
a, EM là tia phân giác của góc CED
b, tam giác BDM đồng dạng với tam giác CME
c, BD.CE=a^2
1.cho tam giác ABC cân tại A. M là trung điểm của BC. D,E lần lượt thuộc các cạnh AB,ACsao cho góc DEM= góc B. CMR :a) DM là tia phân giác góc BDE. b)BDxCE=BC^ : 4
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db
cho tam giác ABC cân tại A , M là trung điểm D và E theo thứ tụ thuộc các cạnh AB và AC . sao cho góc CME = góc BDM :a,CM : BD.CE=BM^2
cho tam giác ABC cân tại A , M là trung điểm D và E theo thứ tụ thuộc các cạnh AB và AC . sao cho góc CME = góc BDM :a,CM : BD.CE=BM^2
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân