Bài 1) Cho tam giác ABC cân tại A. Kẻ BM vuông góc AC. Kẻ CN vuông góc ABa) Chứng minh Δ ABM = Δ ACN
b) Gọi K là giao điểm của BM và CN. Chứng minh AK là tia phân giác của góc A
c) Gọi D là trung điểm của đoạn thẳng BC. Chứng minh 3 điểm A, K, D thẳng hàng
giải hộ mk câu c với ạ. Mk cảm ơnnnnnn
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại E Kẻ EH vuông góc với BC ( H Thuộc BC) a, Cho AB = 6 cm BC = 5 cm Tính AC?? b, Chứng Minh AB = BH c, kẻ AM vuông góc với BC tại M. Chứng minh AH là tia phân giác của góc MAC d, gọi K là giao điểm của AM và BE. Chứng minh tam giác AKE là tam giác cân ( Lưu ý : vẽ hình ms 5*)
ABC cân tại A, góc A = 500:
a) Tính góc B, góc C?
b) Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh ABH=ACH.
c) Biết AB = 17cm, BC = 16cm, tính AH?
Vẽ CN vuông góc AB (N thuộc AB), BM vuông góc AC (M thuộc AC). Chứng minh NC = MB.
Bài 14: Cho ABC có ba góc nhọn và AB < AC. Qua B kẻ đường thẳng vuông góc với AC
tại điểm M, qua C kẻ đường thẳng vuông góc với AB tại điểm N.
a) Chứng minh: \(\widehat{ABM}\)=\(\widehat{ACN}\)
b) Trên tia đối của tia BM lấy điểm D sao cho BD = AC. Trên tia đối của tia CN lấy điểm E
sao cho CE = AB. Chứng minh rằng: △ABD = △ECA
c) Chứng minh: AD ⏊ AE
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ \(BH\perp AM\left(H\in AM\right)\), kẻ \(CK\perp AN\left(K\in AN\right)\). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Khi \(\widehat{BAC}=60^0\) và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC ?
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
: Cho ∆ABC cân tại A (Â < 900). Kẻ AI vuông góc với BC tại I.
a.) Chứng minh ∆AIB = ∆AIC.
b.) Chứng minh AI là tia phân giác của góc BAC.
c.) Kẻ IE vuông góc với AB tại E, lấy điểm F trên AC sao cho AF = AE.
Chứng minh ∆AIE = ∆AIF
d.) Kẻ BM vuông góc với AC tại M, BM cắt EI tại O và cắt AI tại H. Chứng minh ∆OHI cân.