Cho tam giác ABC cân tại A , phân giác CD. Qua D kẻ tia DF vuông góc với DC và tia DE // BC (F thuộc BC ; E thuộc AC). Gọi M là giao điểm của DE với tia phân giác của góc BAC. Chứng minh :
a) CF = 2BD
b) DM = 1/4CF
Cho tam giác ABC cân ở A phân giác CD. Qua D kẻ DF_|_DC và tia DE//BC(E thuộc AC, F thuộc BC). Gọi M là giao điểm của DE vs tia phân giác của góc BAC. Cmr
a, CF=2BD
b, DM=1/4CF
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
cho tam giác ABC (AB<AC), tiA Ax đi qua trung điểm M của BC. kẻ BE và CF vuông góc với Ax ( E và F thuộc tia A. chứng minh rằng :
a) AD=BC b) tam giác EAB= tam giác ECD
c)OE là tia phân giác của góc xoy
Cho tam giác ABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=AD
a)C/m tam giác ABM = tam giác DCM
b)C/m AB // DC
c)Kẻ BE vuông góc AM (E thuộc BC), CF vuông góc DM(F thuộc DM)
C/m M là trung điểm của đoạn thẳng EF
cho tam giác ABC cân ở A,phân giác CD.Qua D kẻ tia DF vuông góc với DC và tia DE song song với BC(F thuộc BC,E thuộc AC).Gọi M là giao điểm cua DE với tia phân giác của BAC.C/M:
a)CF=2BD
b)DM=1/4CF
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B , D thuộc AC , Gọi E là 1 điểm trên cạnh BC sao cho BE=BA
a, Trên tia đối của tia AC lấy điểm F sao cho AF=EC, CMR: CF=BC
1. Cho ΔABC (AB khác AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E; F ϵ Ax). So sáh độ dài BE và CF.
2. Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. CMR:
a) AD = BC
b) ΔEAB = ΔECD
c) OE là tia phân giác của góc xOy.
GIÚP NHÉ MN!!!