Bài 5: (3đ) Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC (H thuộc BC). a) Chứng minh ABH = ACH . b) Kẻ HM AB M AB ⊥ ( ) , kẻ HN AC N AC ⊥ ( ) . Chứng minh: MN // BC c) Trên tia đối của tia AB lấy E sao cho AB = AE, kẻ AD vuông góc với EC. Chứng minh AD vuông AH
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB).
a) Chứng minh: BD = CE.
b) Chứng minh: Tam giác AED cân.
c) Gọi I là giao điểm của BD và CE. Chứng minh: AI là phân giác của góc A và
AI vuông góc BC
Các bạn giúp mình với
BÀI 3 Cho tam giác ABC vuông tại C có góc A=60 độ và đường phân giác của góc BAC cắt BC tại E . Kẻ EK vuông góc AB tại K (K thuộc AB).Kẻ BD vuông góc với AE tại D (D thuộc AE ) chứng minh a) TAm giác ACE bằng tam giác AKE b) AE là đường trung trực của đoạn thẳng CK c)KA=KB d)EB>EC
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
Cho tam giác ABC cân tại A, M là trung điểm của BC.
a. Chứng minh rằng tam giác AMB = tam giác AMC
b. Kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC).
Chứng minh rằng: MD = ME
Bài 16: Cho tam giác ABC cân tại A (). Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
Chứng minh ∆ABD = ∆ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh tam giác ADE cân.
Bài 16: Cho tam giác ABC cân tại A . Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
Chứng minh tam giacs ABD = tam giacs ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh tam giác ADE cân.
Cho tam giác ABC có góc ACB=40 độ, đường cao AH. Tia phân giác của góc HAC cắt BC tại D. Kẻ Dk vuông góc với AC(k thuộc AC).
a, CM: tam giác AHD= tam giác AKD.
b, CM: AD vuông góc với HK.
c, Qua điểm C kẻ đường vuông góc với tia AD tai E. Chứng minh rằng các đường AH, KD, CE đồng qui.
d, CM: KC<KA.
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI