\(\widehat{ABD}+\widehat{A}=90^0\)(ΔABD vuông tại D)
\(\widehat{ACE}+\widehat{A}=90^0\)(ΔACE vuông tại E)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
\(\widehat{ABD}+\widehat{A}=90^0\)(ΔABD vuông tại D)
\(\widehat{ACE}+\widehat{A}=90^0\)(ΔACE vuông tại E)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
Cho tam giác ABC cân tại A ( ). Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
a) Chứng minh ∆ABD = ∆ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh IB > .
Cho tam giác ABC có A = 80 độ , B = 50 độ . a, chứng minh tam giác ABC cân . b, kẻ BD vuông góc AC ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) . Chứng minh tam giác ABD = tam giác ACE . c, tam giác AED là tam giác gì?
Cho tam giác abc cân tại a (góc a<90 độ) vẽ BD vuông góc với AC,CE vuông góc AB(D thuộc AC,E thuộc AB) gọi I là giao điểm của BD và CE
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Chứng minh tam giác IBC cân
c)chứng minh AI^2+BE^2=AD^2+BI^2
cho tam giác ABC có 3 góc nhọn, AB<AC. kẻ BD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB) BDxCE tại I. chứng minh: a) so sánh góc ABD và góc ACE
b) chứng minh BI < CI
C) CE>BD
Cho tam giác nhọn ABC. Vẽ BD vuông góc với AC ( D thuộc AC ) và CE vuông góc
với AB ( E thuộc AB)
a. Chứng minh: góc ABD=góc ACE
b. Trên tia đối của tia BD lấy điểm M sao cho BM = AC. Trên tia đối của tia CE lấy
điểm N sao cho CN = AB. Chứng minh AM = AN
c. Chứng minh AM vuông góc với AN
cho tam giác ABC cân tại A [góc A nhỏ hơn 90 độ ].Kẻ BD vuông góc AC [D thuộc AC ],CE vuông góc AB [E thuộc AB ],BD và CE cắt nhau tại H.
a] chứng minh tam giác ABD = tam giác ACE
b] Chứng minh tam giác BHC cân
c] chứng minh ED song song BC
d] AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BD // CE
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E)
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E) a)Chứng minh tam giác ABD bằng tam giác ACE b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều