a) △ADB và △ACI có: \(\widehat{ADB}=\widehat{ACI};\widehat{BAD}=\widehat{IAC}\)
\(\Rightarrow\)△ADB∼△ACI (g-g). \(\Rightarrow\widehat{ABD}=\widehat{AIC}\)
b) △ADB và △CDI có: \(\widehat{ADB}=\widehat{CDI};\widehat{ABD}=\widehat{CID}\)
\(\Rightarrow\)△ADB∼△CDI (g-g) \(\Rightarrow\dfrac{AD}{CD}=\dfrac{DB}{DI}\Rightarrow AD.DI=BD.CD\left(1\right)\)
△ADB∼△ACI \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AI}\Rightarrow AD.AI=AB.AC\left(2\right)\)
Từ (1), (2) suy ra:
\(AB.AC-BD.CD=AD\left(AI-DI\right)=AD.AD=AD^2\)