Suy luận.
Tử số của P lớn hơn hoặc bằng 2, còn mẫu số là sin 2 a . cos 2 a = 2/3. 1/3 = 2/9 < 1/4, nên P ≤ 8. Do đó các phương án A, B, D bị loại. Đáp án là C.
Suy luận.
Tử số của P lớn hơn hoặc bằng 2, còn mẫu số là sin 2 a . cos 2 a = 2/3. 1/3 = 2/9 < 1/4, nên P ≤ 8. Do đó các phương án A, B, D bị loại. Đáp án là C.
a) Cho cos α = 2 3 . Tính giá trị của biểu thức
A = tan α + 3 c o t α tan α + c o t α
b) Cho sin α = 3 5 v à 90 ° < α < 180 °
Tính giá trị của biểu thức:
C = c o t α - 2 tan α tan α + 3 c o t α
Cho tanα = 3/5.
Giá trị của biểu thức A = sin α + cos α sin α - cos α bằng:
A. -4
B. -3
C. -2
D. -1
Cho biểu thức f(x)=( |m|-8)x^4+6x^3-(x-1)^2-(x+1)^2 có bao nhiêu giá trị nguyên của m để tam thức đã cho không có giá trị nào của x sao cho dấu của nó dương?
A.4 B. 5 C. 8 D.7
Cho góc α thỏa mãn π 2 < a < 2 π và c o t α + π 3 = - 3 Tính giá trị của biểu thức P = sin α + π 6 + c o s α
A. P = 3 2
B. P = 1
C. P = -1
D. P = - 3 2
Giá trị biểu thức sau khi tanα = 3 là: B = sin α - cos α sin 3 α + 3 cos 3 α + 2 sin α
A. B = - 2 9
B. B = 1 9
C. B = - 1 9
D. B = 2 9
Cho tanα + cotα = -2. Giá trị của biểu thức N = tan 3 α + c o t 3 α là
A. 3 B. 4
C. -2 D. 2
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái trị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá trị biểu thức S=2m+5n
Cho tanα = 2cotα và 3π/2 < α < 2π. Giá trị của biểu thức sinα + cosα là
Cho sin α = 3 5 v à π 2 < α < π
Giá trị của biểu thức M = c o t α - 2 tan α tan α + 3 c o t α là:
A. 4 57
B. 2 57
C. - 4 57
D. - 2 57