\(S=5+5^2+..+5^{2012}\)
=\(\left(5+5^2+5^3+5^4\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)
=\(780\left(1+....+5^{2008}\right)⋮65\)
Hay \(S⋮65\left(đpcm\right)\)
\(S=5+5^2+5^3+5^4+...+\)\(5^{2012}\)
\(S=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)
\(S=65.12+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2008}.\left(5+5^2+5^3+5^4\right)\)
\(S=65.12+5^4.65.12+...+5^{2008}.65.12\)
\(S=65.12.\left(1+5^4+...+5^{2008}\right)\)
\(\Rightarrow S\) chia hết cho \(65\) ( Đpcm ).